非线性滤波问题的实时算法

S. Yau, S. Yau
{"title":"非线性滤波问题的实时算法","authors":"S. Yau, S. Yau","doi":"10.1109/CDC.2001.980569","DOIUrl":null,"url":null,"abstract":"The fundamental problem of nonlinear filtering theory is how to solve robust D-M-Z equation in real time and in memoryless manner. This paper describes a new real time algorithm which reduces the nonlinear filtering problem to off-line computations. Our algorithm gives convergent solutions in both pointwise sense and L/sup 2/ in case that the drift term and observation dynamic term have linear growths. The algorithm presented is slightly better than that given in our previous paper (2000).","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Real time algorithm for nonlinear filtering problem\",\"authors\":\"S. Yau, S. Yau\",\"doi\":\"10.1109/CDC.2001.980569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fundamental problem of nonlinear filtering theory is how to solve robust D-M-Z equation in real time and in memoryless manner. This paper describes a new real time algorithm which reduces the nonlinear filtering problem to off-line computations. Our algorithm gives convergent solutions in both pointwise sense and L/sup 2/ in case that the drift term and observation dynamic term have linear growths. The algorithm presented is slightly better than that given in our previous paper (2000).\",\"PeriodicalId\":131411,\"journal\":{\"name\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.980569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

非线性滤波理论的基本问题是如何实时、无记忆地求解鲁棒D-M-Z方程。本文提出了一种新的实时滤波算法,将非线性滤波问题简化为离线计算。当漂移项和观测动态项呈线性增长时,我们的算法在点向和L/sup 2/下均给出了收敛解。所提出的算法比我们之前的论文(2000)中给出的算法稍微好一些。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real time algorithm for nonlinear filtering problem
The fundamental problem of nonlinear filtering theory is how to solve robust D-M-Z equation in real time and in memoryless manner. This paper describes a new real time algorithm which reduces the nonlinear filtering problem to off-line computations. Our algorithm gives convergent solutions in both pointwise sense and L/sup 2/ in case that the drift term and observation dynamic term have linear growths. The algorithm presented is slightly better than that given in our previous paper (2000).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear symmetry of nonlinear systems On-line predictive techniques for "differentiated services" networks The Lie algebra structure of spin systems and their controllability properties Time-delayed chaos control with repetitive learning Robust nonlinear motion control of a helicopter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1