P. Chhikara, Rajkumar Tekchandani, Neeraj Kumar, S. Tanwar, J. Rodrigues
{"title":"基于无人机群网络的空气质量指数预测的联邦学习","authors":"P. Chhikara, Rajkumar Tekchandani, Neeraj Kumar, S. Tanwar, J. Rodrigues","doi":"10.1109/GLOBECOM46510.2021.9685991","DOIUrl":null,"url":null,"abstract":"People need to breathe, and so do other living beings, including plants and animals. It is impossible to overlook the impact of air pollution on nature, human well-being, and concerned countries' economies. Monitoring of air pollution and future predictions of air quality have lately displayed a vital concern. There is a need to predict the air quality index with high accuracy; on a real-time basis to prevent people from health issues caused by air pollution. With the help of Unmanned Aerial Vehicle's onboard sensors, we can collect air quality data easily. The paper proposes a distributed and decentralized Federated Learning approach within a UAV swarm. The accumulated data by the sensors are used as an input to the Long Short Term Memory (LSTM) model. Each UAV used its locally gathered data to train a model before transmitting the local model to the central base station. The central base station creates a master model by combining all the UAV's local model weights of the participating UAVs in the FL process and transmits it to all UAV s in the subsequent cycles. The effectiveness of the proposed model is evaluated with other machine learning models using various evaluation metrics using test data from the capital city of India, i.e., Delhi.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Federated Learning for Air Quality Index Prediction using UAV Swarm Networks\",\"authors\":\"P. Chhikara, Rajkumar Tekchandani, Neeraj Kumar, S. Tanwar, J. Rodrigues\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"People need to breathe, and so do other living beings, including plants and animals. It is impossible to overlook the impact of air pollution on nature, human well-being, and concerned countries' economies. Monitoring of air pollution and future predictions of air quality have lately displayed a vital concern. There is a need to predict the air quality index with high accuracy; on a real-time basis to prevent people from health issues caused by air pollution. With the help of Unmanned Aerial Vehicle's onboard sensors, we can collect air quality data easily. The paper proposes a distributed and decentralized Federated Learning approach within a UAV swarm. The accumulated data by the sensors are used as an input to the Long Short Term Memory (LSTM) model. Each UAV used its locally gathered data to train a model before transmitting the local model to the central base station. The central base station creates a master model by combining all the UAV's local model weights of the participating UAVs in the FL process and transmits it to all UAV s in the subsequent cycles. The effectiveness of the proposed model is evaluated with other machine learning models using various evaluation metrics using test data from the capital city of India, i.e., Delhi.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Federated Learning for Air Quality Index Prediction using UAV Swarm Networks
People need to breathe, and so do other living beings, including plants and animals. It is impossible to overlook the impact of air pollution on nature, human well-being, and concerned countries' economies. Monitoring of air pollution and future predictions of air quality have lately displayed a vital concern. There is a need to predict the air quality index with high accuracy; on a real-time basis to prevent people from health issues caused by air pollution. With the help of Unmanned Aerial Vehicle's onboard sensors, we can collect air quality data easily. The paper proposes a distributed and decentralized Federated Learning approach within a UAV swarm. The accumulated data by the sensors are used as an input to the Long Short Term Memory (LSTM) model. Each UAV used its locally gathered data to train a model before transmitting the local model to the central base station. The central base station creates a master model by combining all the UAV's local model weights of the participating UAVs in the FL process and transmits it to all UAV s in the subsequent cycles. The effectiveness of the proposed model is evaluated with other machine learning models using various evaluation metrics using test data from the capital city of India, i.e., Delhi.