组合问题的高效全局优化

Martin Zaefferer, Jörg Stork, Martina Friese, A. Fischbach, B. Naujoks, T. Bartz-Beielstein
{"title":"组合问题的高效全局优化","authors":"Martin Zaefferer, Jörg Stork, Martina Friese, A. Fischbach, B. Naujoks, T. Bartz-Beielstein","doi":"10.1145/2576768.2598282","DOIUrl":null,"url":null,"abstract":"Real-world optimization problems may require time consuming and expensive measurements or simulations. Recently, the application of surrogate model-based approaches was extended from continuous to combinatorial spaces. This extension is based on the utilization of suitable distance measures such as Hamming or Swap Distance. In this work, such an extension is implemented for Kriging (Gaussian Process) models. Kriging provides a measure of uncertainty when determining predictions. This can be harnessed to calculate the Expected Improvement (EI) of a candidate solution. In continuous optimization, EI is used in the Efficient Global Optimization (EGO) approach to balance exploitation and exploration for expensive optimization problems. Employing the extended Kriging model, we show for the first time that EGO can successfully be applied to combinatorial optimization problems. We describe necessary adaptations and arising issues as well as experimental results on several test problems. All surrogate models are optimized with a Genetic Algorithm (GA). To yield a comprehensive comparison, EGO and Kriging are compared to an earlier suggested Radial Basis Function Network, a linear modeling approach, as well as model-free optimization with random search and GA. EGO clearly outperforms the competing approaches on most of the tested problem instances.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Efficient global optimization for combinatorial problems\",\"authors\":\"Martin Zaefferer, Jörg Stork, Martina Friese, A. Fischbach, B. Naujoks, T. Bartz-Beielstein\",\"doi\":\"10.1145/2576768.2598282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-world optimization problems may require time consuming and expensive measurements or simulations. Recently, the application of surrogate model-based approaches was extended from continuous to combinatorial spaces. This extension is based on the utilization of suitable distance measures such as Hamming or Swap Distance. In this work, such an extension is implemented for Kriging (Gaussian Process) models. Kriging provides a measure of uncertainty when determining predictions. This can be harnessed to calculate the Expected Improvement (EI) of a candidate solution. In continuous optimization, EI is used in the Efficient Global Optimization (EGO) approach to balance exploitation and exploration for expensive optimization problems. Employing the extended Kriging model, we show for the first time that EGO can successfully be applied to combinatorial optimization problems. We describe necessary adaptations and arising issues as well as experimental results on several test problems. All surrogate models are optimized with a Genetic Algorithm (GA). To yield a comprehensive comparison, EGO and Kriging are compared to an earlier suggested Radial Basis Function Network, a linear modeling approach, as well as model-free optimization with random search and GA. EGO clearly outperforms the competing approaches on most of the tested problem instances.\",\"PeriodicalId\":123241,\"journal\":{\"name\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2576768.2598282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

现实世界的优化问题可能需要耗时和昂贵的测量或模拟。近年来,基于代理模型的方法的应用从连续空间扩展到组合空间。这个扩展是基于适当的距离措施,如汉明或交换距离的利用。在这项工作中,对Kriging(高斯过程)模型实现了这样的扩展。克里格在确定预测时提供了一种不确定性的度量。这可以用来计算候选解决方案的预期改进(EI)。在连续优化中,EI被用于高效全局优化(EGO)方法中,以平衡昂贵优化问题的开采和勘探。利用扩展的Kriging模型,我们首次证明了EGO可以成功地应用于组合优化问题。我们描述了必要的调整和出现的问题,以及几个测试问题的实验结果。所有代理模型均采用遗传算法(GA)进行优化。为了进行全面的比较,EGO和Kriging与早期提出的径向基函数网络(Radial Basis Function Network)、线性建模方法以及随机搜索和遗传算法的无模型优化进行了比较。在大多数测试的问题实例上,EGO明显优于其他竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient global optimization for combinatorial problems
Real-world optimization problems may require time consuming and expensive measurements or simulations. Recently, the application of surrogate model-based approaches was extended from continuous to combinatorial spaces. This extension is based on the utilization of suitable distance measures such as Hamming or Swap Distance. In this work, such an extension is implemented for Kriging (Gaussian Process) models. Kriging provides a measure of uncertainty when determining predictions. This can be harnessed to calculate the Expected Improvement (EI) of a candidate solution. In continuous optimization, EI is used in the Efficient Global Optimization (EGO) approach to balance exploitation and exploration for expensive optimization problems. Employing the extended Kriging model, we show for the first time that EGO can successfully be applied to combinatorial optimization problems. We describe necessary adaptations and arising issues as well as experimental results on several test problems. All surrogate models are optimized with a Genetic Algorithm (GA). To yield a comprehensive comparison, EGO and Kriging are compared to an earlier suggested Radial Basis Function Network, a linear modeling approach, as well as model-free optimization with random search and GA. EGO clearly outperforms the competing approaches on most of the tested problem instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-cornered coevolution learning classifier systems for classification tasks Runtime analysis to compare best-improvement and first-improvement in memetic algorithms Clonal selection based fuzzy C-means algorithm for clustering SPSO 2011: analysis of stability; local convergence; and rotation sensitivity GPU-accelerated evolutionary design of the complete exchange communication on wormhole networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1