开始一个计算科学项目

J. Caristi, Valerie Barr, Joe Sloan, E. Stahlberg
{"title":"开始一个计算科学项目","authors":"J. Caristi, Valerie Barr, Joe Sloan, E. Stahlberg","doi":"10.1145/1953163.1953167","DOIUrl":null,"url":null,"abstract":"It is evident from the recent discussions about computational thinking and the number of papers, panels and birds-of-a-feather sessions at the 2010 SIGCSE Symposium that there is not only a deep connection between computer science and many other disciplines, especially in the sciences, but also a desire to think of computation as an equal partner with experimentation and theory in the solution of science problems. As David Hemmendinger said in a thought piece that appeared recently in ACM Inroads: “Teaching computational thinking [to students in disciplines other than computer science] ... is to teach them how to think like an economist, a physicist, an artist, and to understand how to use computation to solve their problems, to create, and to discover new questions that can be fruitfully explored.” [1].","PeriodicalId":137934,"journal":{"name":"Proceedings of the 42nd ACM technical symposium on Computer science education","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Starting a computational science program\",\"authors\":\"J. Caristi, Valerie Barr, Joe Sloan, E. Stahlberg\",\"doi\":\"10.1145/1953163.1953167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is evident from the recent discussions about computational thinking and the number of papers, panels and birds-of-a-feather sessions at the 2010 SIGCSE Symposium that there is not only a deep connection between computer science and many other disciplines, especially in the sciences, but also a desire to think of computation as an equal partner with experimentation and theory in the solution of science problems. As David Hemmendinger said in a thought piece that appeared recently in ACM Inroads: “Teaching computational thinking [to students in disciplines other than computer science] ... is to teach them how to think like an economist, a physicist, an artist, and to understand how to use computation to solve their problems, to create, and to discover new questions that can be fruitfully explored.” [1].\",\"PeriodicalId\":137934,\"journal\":{\"name\":\"Proceedings of the 42nd ACM technical symposium on Computer science education\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd ACM technical symposium on Computer science education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1953163.1953167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM technical symposium on Computer science education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1953163.1953167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从最近关于计算思维的讨论以及2010年SIGCSE研讨会上的论文、小组讨论和羽毛会议的数量可以明显看出,计算机科学不仅与许多其他学科(尤其是科学领域)有着深刻的联系,而且在解决科学问题时,人们也希望将计算与实验和理论视为平等的伙伴。正如David Hemmendinger最近在《ACM进展》上发表的一篇思想文章中所说的那样:“(向计算机科学以外学科的学生)教授计算思维……教他们如何像经济学家、物理学家、艺术家一样思考,并理解如何使用计算来解决问题,创造和发现新的问题,这些问题可以被富有成效地探索。”[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Starting a computational science program
It is evident from the recent discussions about computational thinking and the number of papers, panels and birds-of-a-feather sessions at the 2010 SIGCSE Symposium that there is not only a deep connection between computer science and many other disciplines, especially in the sciences, but also a desire to think of computation as an equal partner with experimentation and theory in the solution of science problems. As David Hemmendinger said in a thought piece that appeared recently in ACM Inroads: “Teaching computational thinking [to students in disciplines other than computer science] ... is to teach them how to think like an economist, a physicist, an artist, and to understand how to use computation to solve their problems, to create, and to discover new questions that can be fruitfully explored.” [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CodeWrite: supporting student-driven practice of java Computing and music: a spectrum of sound Session details: Panel Applying data structures in exams The use of evidence in the change making process of computer science educators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1