小峰值功率约束下高斯信道的信息容量

M. Raginsky
{"title":"小峰值功率约束下高斯信道的信息容量","authors":"M. Raginsky","doi":"10.1109/ALLERTON.2008.4797569","DOIUrl":null,"url":null,"abstract":"This paper deals with information capacities of Gaussian channels under small (but nonvanishing) peak power constraints. We prove that, when the peak amplitude is below 1.05, the capacity of the scalar Gaussian channel is achieved by symmetric equiprobable signaling and is equal to at least 80% of the corresponding average-power capacity. The proof uses the identity of Guo, Shamai and Verdu that relates mutual information and minimum mean square error in Gaussian channels, together with several results on the minimax estimation of a bounded parameter in white Gaussian noise. We also give upper and lower bounds on peak-power capacities of vector Gaussian channels whose inputs are constrained to lie in suitably small ellipsoids and show that we can achieve at least 80% of the average-power capacity by having the transmitters use symmetric equiprobable signaling at amplitudes determined from the usual water-filling policy. The 80% figure comes from an upper bound on the ratio of the nonlinear and the linear minimax risks of estimating a bounded parameter in white Gaussian noise.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"On the information capacity of Gaussian channels under small peak power constraints\",\"authors\":\"M. Raginsky\",\"doi\":\"10.1109/ALLERTON.2008.4797569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with information capacities of Gaussian channels under small (but nonvanishing) peak power constraints. We prove that, when the peak amplitude is below 1.05, the capacity of the scalar Gaussian channel is achieved by symmetric equiprobable signaling and is equal to at least 80% of the corresponding average-power capacity. The proof uses the identity of Guo, Shamai and Verdu that relates mutual information and minimum mean square error in Gaussian channels, together with several results on the minimax estimation of a bounded parameter in white Gaussian noise. We also give upper and lower bounds on peak-power capacities of vector Gaussian channels whose inputs are constrained to lie in suitably small ellipsoids and show that we can achieve at least 80% of the average-power capacity by having the transmitters use symmetric equiprobable signaling at amplitudes determined from the usual water-filling policy. The 80% figure comes from an upper bound on the ratio of the nonlinear and the linear minimax risks of estimating a bounded parameter in white Gaussian noise.\",\"PeriodicalId\":120561,\"journal\":{\"name\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2008.4797569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

本文研究高斯信道在小(但不消失)峰值功率约束下的信息量。我们证明,当峰值幅度低于1.05时,标量高斯信道的容量是通过对称等概率信号来实现的,并且至少等于相应平均功率容量的80%。该证明使用了Guo, Shamai和Verdu的相互信息和高斯信道中最小均方误差的恒等式,以及高斯白噪声中有界参数的极大极小估计的几个结果。我们还给出了输入被限制在适当的小椭球中的矢量高斯信道的峰值功率容量的上界和下界,并表明我们可以通过让发射机在通常的充水策略确定的振幅下使用对称等概率信号来实现至少80%的平均功率容量。80%的数字来自高斯白噪声中估计有界参数的非线性和线性最小最大风险之比的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the information capacity of Gaussian channels under small peak power constraints
This paper deals with information capacities of Gaussian channels under small (but nonvanishing) peak power constraints. We prove that, when the peak amplitude is below 1.05, the capacity of the scalar Gaussian channel is achieved by symmetric equiprobable signaling and is equal to at least 80% of the corresponding average-power capacity. The proof uses the identity of Guo, Shamai and Verdu that relates mutual information and minimum mean square error in Gaussian channels, together with several results on the minimax estimation of a bounded parameter in white Gaussian noise. We also give upper and lower bounds on peak-power capacities of vector Gaussian channels whose inputs are constrained to lie in suitably small ellipsoids and show that we can achieve at least 80% of the average-power capacity by having the transmitters use symmetric equiprobable signaling at amplitudes determined from the usual water-filling policy. The 80% figure comes from an upper bound on the ratio of the nonlinear and the linear minimax risks of estimating a bounded parameter in white Gaussian noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning sparse doubly-selective channels Ergodic two-user interference channels: Is separability optimal? Weight distribution of codes on hypergraphs Compound multiple access channels with conferencing decoders Transmission techniques for relay-interference networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1