用迁移学习改进代码自动完成

Wenjie Zhou, Seohyun Kim, V. Murali, Gareth Ari Aye
{"title":"用迁移学习改进代码自动完成","authors":"Wenjie Zhou, Seohyun Kim, V. Murali, Gareth Ari Aye","doi":"10.1145/3510457.3513061","DOIUrl":null,"url":null,"abstract":"Software language models have achieved promising results predicting code completion usages, and several industry studies have described successful IDE integration. Recently, accuracy in autocompletion prediction improved 12.8%[2] from training on a real-world dataset collected from programmers’ IDE activities. But what if the number of examples of IDE autocompletion in the target programming language is inadequate for model training? In this paper, we highlight practical reasons for this inadequacy, and make a call to action in using transfer learning to overcome the issue.","PeriodicalId":119790,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Improving Code Autocompletion with Transfer Learning\",\"authors\":\"Wenjie Zhou, Seohyun Kim, V. Murali, Gareth Ari Aye\",\"doi\":\"10.1145/3510457.3513061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software language models have achieved promising results predicting code completion usages, and several industry studies have described successful IDE integration. Recently, accuracy in autocompletion prediction improved 12.8%[2] from training on a real-world dataset collected from programmers’ IDE activities. But what if the number of examples of IDE autocompletion in the target programming language is inadequate for model training? In this paper, we highlight practical reasons for this inadequacy, and make a call to action in using transfer learning to overcome the issue.\",\"PeriodicalId\":119790,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510457.3513061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510457.3513061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

软件语言模型在预测代码完成使用方面取得了可喜的成果,一些行业研究已经描述了成功的IDE集成。最近,通过在程序员的IDE活动中收集的真实数据集上进行训练,自动完成预测的准确性提高了12.8%[2]。但是,如果目标编程语言中的IDE自动补全示例的数量不足以进行模型训练怎么办?在本文中,我们强调了这种不足的现实原因,并呼吁采取行动,利用迁移学习来克服这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Code Autocompletion with Transfer Learning
Software language models have achieved promising results predicting code completion usages, and several industry studies have described successful IDE integration. Recently, accuracy in autocompletion prediction improved 12.8%[2] from training on a real-world dataset collected from programmers’ IDE activities. But what if the number of examples of IDE autocompletion in the target programming language is inadequate for model training? In this paper, we highlight practical reasons for this inadequacy, and make a call to action in using transfer learning to overcome the issue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Industry's Cry for Tools that Support Large-Scale Refactoring Code Reviewer Recommendation in Tencent: Practice, Challenge, and Direction* What's bothering developers in code review? The Impact of Flaky Tests on Historical Test Prioritization on Chrome Surveying the Developer Experience of Flaky Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1