Wenjie Zhou, Seohyun Kim, V. Murali, Gareth Ari Aye
{"title":"用迁移学习改进代码自动完成","authors":"Wenjie Zhou, Seohyun Kim, V. Murali, Gareth Ari Aye","doi":"10.1145/3510457.3513061","DOIUrl":null,"url":null,"abstract":"Software language models have achieved promising results predicting code completion usages, and several industry studies have described successful IDE integration. Recently, accuracy in autocompletion prediction improved 12.8%[2] from training on a real-world dataset collected from programmers’ IDE activities. But what if the number of examples of IDE autocompletion in the target programming language is inadequate for model training? In this paper, we highlight practical reasons for this inadequacy, and make a call to action in using transfer learning to overcome the issue.","PeriodicalId":119790,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Improving Code Autocompletion with Transfer Learning\",\"authors\":\"Wenjie Zhou, Seohyun Kim, V. Murali, Gareth Ari Aye\",\"doi\":\"10.1145/3510457.3513061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software language models have achieved promising results predicting code completion usages, and several industry studies have described successful IDE integration. Recently, accuracy in autocompletion prediction improved 12.8%[2] from training on a real-world dataset collected from programmers’ IDE activities. But what if the number of examples of IDE autocompletion in the target programming language is inadequate for model training? In this paper, we highlight practical reasons for this inadequacy, and make a call to action in using transfer learning to overcome the issue.\",\"PeriodicalId\":119790,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510457.3513061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510457.3513061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Code Autocompletion with Transfer Learning
Software language models have achieved promising results predicting code completion usages, and several industry studies have described successful IDE integration. Recently, accuracy in autocompletion prediction improved 12.8%[2] from training on a real-world dataset collected from programmers’ IDE activities. But what if the number of examples of IDE autocompletion in the target programming language is inadequate for model training? In this paper, we highlight practical reasons for this inadequacy, and make a call to action in using transfer learning to overcome the issue.