基于潜在轨迹建模的声学-发音深度反演映射

Patrick Lumban Tobing, H. Kameoka, T. Toda
{"title":"基于潜在轨迹建模的声学-发音深度反演映射","authors":"Patrick Lumban Tobing, H. Kameoka, T. Toda","doi":"10.1109/APSIPA.2017.8282219","DOIUrl":null,"url":null,"abstract":"This paper presents a novel implementation of latent trajectory modeling in a deep acoustic-to-articulatory inversion mapping framework. In the conventional methods, i.e., the Gaussian mixture model (GMM)- and the deep neural network (DNN)- based inversion mappings, the frame interdependency can be considered while generating articulatory parameter trajectories with the use of an explicit constraint between static and dynamic features. However, in training these models, such a constraint is not considered, and therefore, the trained model is not optimum for the mapping procedure. In this paper, we address this problem by introducing a latent trajectory modeling into the DNN-based inversion mapping. In the latent trajectory model, the frame interdependency can be well considered, in both training and mapping, by using a soft-constraint between static and dynamic features. The experimental results demonstrate that the proposed latent trajectory DNN (LTDNN)-based inversion mapping outperforms the conventional and the state-of-the-art inversion mapping systems.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Deep acoustic-to-articulatory inversion mapping with latent trajectory modeling\",\"authors\":\"Patrick Lumban Tobing, H. Kameoka, T. Toda\",\"doi\":\"10.1109/APSIPA.2017.8282219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel implementation of latent trajectory modeling in a deep acoustic-to-articulatory inversion mapping framework. In the conventional methods, i.e., the Gaussian mixture model (GMM)- and the deep neural network (DNN)- based inversion mappings, the frame interdependency can be considered while generating articulatory parameter trajectories with the use of an explicit constraint between static and dynamic features. However, in training these models, such a constraint is not considered, and therefore, the trained model is not optimum for the mapping procedure. In this paper, we address this problem by introducing a latent trajectory modeling into the DNN-based inversion mapping. In the latent trajectory model, the frame interdependency can be well considered, in both training and mapping, by using a soft-constraint between static and dynamic features. The experimental results demonstrate that the proposed latent trajectory DNN (LTDNN)-based inversion mapping outperforms the conventional and the state-of-the-art inversion mapping systems.\",\"PeriodicalId\":142091,\"journal\":{\"name\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2017.8282219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种在声学-发音深层反演映射框架中实现潜在轨迹建模的新方法。在传统的方法中,即基于高斯混合模型(GMM)和基于深度神经网络(DNN)的反演映射中,在使用静态和动态特征之间的显式约束生成铰合参数轨迹时,可以考虑帧间的相互依赖性。然而,在训练这些模型时,没有考虑到这样的约束,因此,训练的模型对于映射过程来说不是最优的。在本文中,我们通过在基于dnn的反演映射中引入潜在轨迹建模来解决这个问题。在潜在轨迹模型中,通过使用静态和动态特征之间的软约束,可以在训练和映射中很好地考虑帧之间的相互依赖性。实验结果表明,基于潜在轨迹深度神经网络(LTDNN)的反演映射优于传统的和最先进的反演映射系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep acoustic-to-articulatory inversion mapping with latent trajectory modeling
This paper presents a novel implementation of latent trajectory modeling in a deep acoustic-to-articulatory inversion mapping framework. In the conventional methods, i.e., the Gaussian mixture model (GMM)- and the deep neural network (DNN)- based inversion mappings, the frame interdependency can be considered while generating articulatory parameter trajectories with the use of an explicit constraint between static and dynamic features. However, in training these models, such a constraint is not considered, and therefore, the trained model is not optimum for the mapping procedure. In this paper, we address this problem by introducing a latent trajectory modeling into the DNN-based inversion mapping. In the latent trajectory model, the frame interdependency can be well considered, in both training and mapping, by using a soft-constraint between static and dynamic features. The experimental results demonstrate that the proposed latent trajectory DNN (LTDNN)-based inversion mapping outperforms the conventional and the state-of-the-art inversion mapping systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Locomotion control of a serpentine crawling robot inspired by central pattern generators On the construction of more human-like chatbots: Affect and emotion analysis of movie dialogue data Pose-invariant kinematic features for action recognition CNN-based bottleneck feature for noise robust query-by-example spoken term detection Robust template matching using scale-adaptive deep convolutional features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1