{"title":"蜂窝电话网络中的频率分配问题","authors":"A. Eisenblätter","doi":"10.1090/dimacs/040/07","DOIUrl":null,"url":null,"abstract":"We present a mathematical formulation of a \\emph{frequency assignment problem} encountered in cellular phone networks: frequencies have to be assigned to stationary transceivers (carriers) such that as little interference as possible is induced while obeying several technical and legal restrictions. The optimization problem is NP-hard, and no good approximation can be guaranteed---unless P = NP. We sketch some starting and improvement heuristics, and report on their successful application for solving the frequency assignment problem under consideration. Computational results on real-world instances with up to 2877 carriers and 50 frequencies are presented.","PeriodicalId":115016,"journal":{"name":"Network Design: Connectivity and Facilities Location","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A frequency assignment problem in cellular phone networks\",\"authors\":\"A. Eisenblätter\",\"doi\":\"10.1090/dimacs/040/07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a mathematical formulation of a \\\\emph{frequency assignment problem} encountered in cellular phone networks: frequencies have to be assigned to stationary transceivers (carriers) such that as little interference as possible is induced while obeying several technical and legal restrictions. The optimization problem is NP-hard, and no good approximation can be guaranteed---unless P = NP. We sketch some starting and improvement heuristics, and report on their successful application for solving the frequency assignment problem under consideration. Computational results on real-world instances with up to 2877 carriers and 50 frequencies are presented.\",\"PeriodicalId\":115016,\"journal\":{\"name\":\"Network Design: Connectivity and Facilities Location\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Design: Connectivity and Facilities Location\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/040/07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Design: Connectivity and Facilities Location","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/040/07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A frequency assignment problem in cellular phone networks
We present a mathematical formulation of a \emph{frequency assignment problem} encountered in cellular phone networks: frequencies have to be assigned to stationary transceivers (carriers) such that as little interference as possible is induced while obeying several technical and legal restrictions. The optimization problem is NP-hard, and no good approximation can be guaranteed---unless P = NP. We sketch some starting and improvement heuristics, and report on their successful application for solving the frequency assignment problem under consideration. Computational results on real-world instances with up to 2877 carriers and 50 frequencies are presented.