{"title":"多样化的产品评论排名:全面了解情况","authors":"Ralf Krestel, Nima Dokoohaki","doi":"10.1109/WI-IAT.2011.33","DOIUrl":null,"url":null,"abstract":"E-commerce Web sites owe much of their popularity to consumer reviews provided together with product descriptions. On-line customers spend hours and hours going through heaps of textual reviews to build confidence in products they are planning to buy. At the same time, popular products have thousands of user-generated reviews. Current approaches to present them to the user or recommend an individual review for a product are based on the helpfulness or usefulness of each review. In this paper we look at the top-k reviews in a ranking to give a good summary to the user with each review complementing the others. To this end we use Latent Dirichlet Allocation to detect latent topics within reviews and make use of the assigned star rating for the product as an indicator of the polarity expressed towards the product and the latent topics within the review. We present a framework to cover different ranking strategies based on theuser's need: Summarizing all reviews, focus on a particular latent topic, or focus on positive, negative or neutral aspects. We evaluated the system using manually annotated review data from a commercial review Web site.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Diversifying Product Review Rankings: Getting the Full Picture\",\"authors\":\"Ralf Krestel, Nima Dokoohaki\",\"doi\":\"10.1109/WI-IAT.2011.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"E-commerce Web sites owe much of their popularity to consumer reviews provided together with product descriptions. On-line customers spend hours and hours going through heaps of textual reviews to build confidence in products they are planning to buy. At the same time, popular products have thousands of user-generated reviews. Current approaches to present them to the user or recommend an individual review for a product are based on the helpfulness or usefulness of each review. In this paper we look at the top-k reviews in a ranking to give a good summary to the user with each review complementing the others. To this end we use Latent Dirichlet Allocation to detect latent topics within reviews and make use of the assigned star rating for the product as an indicator of the polarity expressed towards the product and the latent topics within the review. We present a framework to cover different ranking strategies based on theuser's need: Summarizing all reviews, focus on a particular latent topic, or focus on positive, negative or neutral aspects. We evaluated the system using manually annotated review data from a commercial review Web site.\",\"PeriodicalId\":128421,\"journal\":{\"name\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2011.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diversifying Product Review Rankings: Getting the Full Picture
E-commerce Web sites owe much of their popularity to consumer reviews provided together with product descriptions. On-line customers spend hours and hours going through heaps of textual reviews to build confidence in products they are planning to buy. At the same time, popular products have thousands of user-generated reviews. Current approaches to present them to the user or recommend an individual review for a product are based on the helpfulness or usefulness of each review. In this paper we look at the top-k reviews in a ranking to give a good summary to the user with each review complementing the others. To this end we use Latent Dirichlet Allocation to detect latent topics within reviews and make use of the assigned star rating for the product as an indicator of the polarity expressed towards the product and the latent topics within the review. We present a framework to cover different ranking strategies based on theuser's need: Summarizing all reviews, focus on a particular latent topic, or focus on positive, negative or neutral aspects. We evaluated the system using manually annotated review data from a commercial review Web site.