化学添加剂对SAGD的目视分析

Jingjing Huang, T. Babadagli
{"title":"化学添加剂对SAGD的目视分析","authors":"Jingjing Huang, T. Babadagli","doi":"10.2118/198041-ms","DOIUrl":null,"url":null,"abstract":"\n SAGD (steam assisted gravity drainage) has been proven as an effective technology to enhance heavy oil/bitumen recovery. The main shortcoming of this method is its inefficiency, a result of high water and energy consumption. As a solution to SAGD efficiency improvement, we propose the addition of chemicals resulting in higher recovery and reduced steam consumption. The objective of this paper is to screen new generation chemicals as additives and study the mechanisms and optimum injection strategies. This screening was achieved through Hele-Shaw type macroscopic visual experiments.\n We previously screened a wide variety of chemical additives (Bruns and Babadagli 2017, 2018) for steam flooding. As a continuation of this work, these chemicals were tested for SAGD conditions using a new visual experimental design where the optimal injection strategies were identified, eventually providing a reference for the selection of chemical additives for field applications.\n 11 conventional and new generation chemical additives (heptane, biodiesel, DME, LTS-18, Tween 80, Span 80, Novelfroth 190, ionic liquid (BMMMIM BF4), silicon dioxide nanoparticle, DES9, and DES11) were selected based on both their strong thermal stability and enhanced oil recovery capability. The recovery improvement mechanisms for the different chemical additives and different injection strategies were identified through flow characteristics, emulsifying ability, viscosity reduction capability, and wettability alteration. Simultaneously, the mechanisms were studied from a macro perspective via analyzing areal sweep efficiency and microscopic oil displacement efficiency together with observing the images acquired during the process.\n Three different injection strategies were applied for each chemical: (1) chemicals were injected at the beginning, (2) in the middle, and (3) at the end of the steam injection. The chemical additives played different roles in recovery improvement, and different chemical addition strategies yielded different mechanisms. Heptane exhibited extraordinary characteristics with maximum \"steam saving\" (34.52%) when the middle injection strategy was applied and maximum ultimate oil recovery (64.75%) was obtained for the end injection strategy due to the ability to reduce the viscosity of heavy oil by dissolving around the chamber edge. Steamflooding with Novelfroth 190 showed an excellent performance for the middle and end injection strategies due to its ability to develop rapid oil drainage \"channels\". The addition of surfactant LST-18 presented the ability to improve the EOR by forming emulsions. Additionally, the distributions of the steam chamber in the Hele-Shaw cell were different due to the changed flow characteristics when the same chemical additive was injected at different times, thus showing the ability to reduce viscosity and form emulsions with different strengths.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Visual Analysis of SAGD with Chemical Additives\",\"authors\":\"Jingjing Huang, T. Babadagli\",\"doi\":\"10.2118/198041-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n SAGD (steam assisted gravity drainage) has been proven as an effective technology to enhance heavy oil/bitumen recovery. The main shortcoming of this method is its inefficiency, a result of high water and energy consumption. As a solution to SAGD efficiency improvement, we propose the addition of chemicals resulting in higher recovery and reduced steam consumption. The objective of this paper is to screen new generation chemicals as additives and study the mechanisms and optimum injection strategies. This screening was achieved through Hele-Shaw type macroscopic visual experiments.\\n We previously screened a wide variety of chemical additives (Bruns and Babadagli 2017, 2018) for steam flooding. As a continuation of this work, these chemicals were tested for SAGD conditions using a new visual experimental design where the optimal injection strategies were identified, eventually providing a reference for the selection of chemical additives for field applications.\\n 11 conventional and new generation chemical additives (heptane, biodiesel, DME, LTS-18, Tween 80, Span 80, Novelfroth 190, ionic liquid (BMMMIM BF4), silicon dioxide nanoparticle, DES9, and DES11) were selected based on both their strong thermal stability and enhanced oil recovery capability. The recovery improvement mechanisms for the different chemical additives and different injection strategies were identified through flow characteristics, emulsifying ability, viscosity reduction capability, and wettability alteration. Simultaneously, the mechanisms were studied from a macro perspective via analyzing areal sweep efficiency and microscopic oil displacement efficiency together with observing the images acquired during the process.\\n Three different injection strategies were applied for each chemical: (1) chemicals were injected at the beginning, (2) in the middle, and (3) at the end of the steam injection. The chemical additives played different roles in recovery improvement, and different chemical addition strategies yielded different mechanisms. Heptane exhibited extraordinary characteristics with maximum \\\"steam saving\\\" (34.52%) when the middle injection strategy was applied and maximum ultimate oil recovery (64.75%) was obtained for the end injection strategy due to the ability to reduce the viscosity of heavy oil by dissolving around the chamber edge. Steamflooding with Novelfroth 190 showed an excellent performance for the middle and end injection strategies due to its ability to develop rapid oil drainage \\\"channels\\\". The addition of surfactant LST-18 presented the ability to improve the EOR by forming emulsions. Additionally, the distributions of the steam chamber in the Hele-Shaw cell were different due to the changed flow characteristics when the same chemical additive was injected at different times, thus showing the ability to reduce viscosity and form emulsions with different strengths.\",\"PeriodicalId\":282370,\"journal\":{\"name\":\"Day 2 Mon, October 14, 2019\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, October 14, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/198041-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, October 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/198041-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

SAGD(蒸汽辅助重力泄油)技术已被证明是提高稠油/沥青采收率的有效技术。这种方法的主要缺点是效率低,水和能源消耗高。作为提高SAGD效率的解决方案,我们建议添加化学品,从而提高采收率并降低蒸汽消耗。本文的目的是筛选新一代化学添加剂,并研究其机理和最佳注射策略。这种筛选是通过Hele-Shaw型宏观视觉实验实现的。我们之前筛选了多种用于蒸汽驱的化学添加剂(Bruns and Babadagli 2017, 2018)。作为这项工作的延续,使用新的视觉实验设计对这些化学品进行了SAGD条件下的测试,确定了最佳注入策略,最终为现场应用的化学添加剂选择提供了参考。11种常规和新一代化学添加剂(庚烷、生物柴油、二甲醚、LTS-18、Tween 80、Span 80、Novelfroth 190、离子液体(BMMMIM BF4)、二氧化硅纳米颗粒、DES9和DES11)具有较强的热稳定性和提高采油能力。通过流动特性、乳化能力、降粘能力和润湿性变化,确定了不同化学添加剂和不同注入策略对采收率的提高机理。同时,通过面扫效率和微观驱油效率分析,并观察过程中获取的图像,从宏观角度研究其机理。每种化学品采用了三种不同的注入策略:(1)化学品在注汽开始时注入,(2)在注汽中期注入,(3)在注汽结束时注入。化学添加剂对提高采收率的作用不同,不同的化学添加策略产生不同的机理。采用中间注入策略时,庚烷表现出非凡的“省汽”(34.52%)和最终采收率(64.75%)的特点,这是由于其能够通过在腔室边缘周围的溶解来降低稠油的粘度。Novelfroth 190蒸汽驱由于能够形成快速排油“通道”,在中端和末端注入策略中表现出优异的性能。表面活性剂LST-18的加入能够通过形成乳状液来提高提高采收率。此外,同一种化学添加剂在不同时间注入时,由于流动特性的改变,使得Hele-Shaw槽内蒸汽室的分布也不同,从而表现出降低粘度和形成不同强度乳液的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Analysis of SAGD with Chemical Additives
SAGD (steam assisted gravity drainage) has been proven as an effective technology to enhance heavy oil/bitumen recovery. The main shortcoming of this method is its inefficiency, a result of high water and energy consumption. As a solution to SAGD efficiency improvement, we propose the addition of chemicals resulting in higher recovery and reduced steam consumption. The objective of this paper is to screen new generation chemicals as additives and study the mechanisms and optimum injection strategies. This screening was achieved through Hele-Shaw type macroscopic visual experiments. We previously screened a wide variety of chemical additives (Bruns and Babadagli 2017, 2018) for steam flooding. As a continuation of this work, these chemicals were tested for SAGD conditions using a new visual experimental design where the optimal injection strategies were identified, eventually providing a reference for the selection of chemical additives for field applications. 11 conventional and new generation chemical additives (heptane, biodiesel, DME, LTS-18, Tween 80, Span 80, Novelfroth 190, ionic liquid (BMMMIM BF4), silicon dioxide nanoparticle, DES9, and DES11) were selected based on both their strong thermal stability and enhanced oil recovery capability. The recovery improvement mechanisms for the different chemical additives and different injection strategies were identified through flow characteristics, emulsifying ability, viscosity reduction capability, and wettability alteration. Simultaneously, the mechanisms were studied from a macro perspective via analyzing areal sweep efficiency and microscopic oil displacement efficiency together with observing the images acquired during the process. Three different injection strategies were applied for each chemical: (1) chemicals were injected at the beginning, (2) in the middle, and (3) at the end of the steam injection. The chemical additives played different roles in recovery improvement, and different chemical addition strategies yielded different mechanisms. Heptane exhibited extraordinary characteristics with maximum "steam saving" (34.52%) when the middle injection strategy was applied and maximum ultimate oil recovery (64.75%) was obtained for the end injection strategy due to the ability to reduce the viscosity of heavy oil by dissolving around the chamber edge. Steamflooding with Novelfroth 190 showed an excellent performance for the middle and end injection strategies due to its ability to develop rapid oil drainage "channels". The addition of surfactant LST-18 presented the ability to improve the EOR by forming emulsions. Additionally, the distributions of the steam chamber in the Hele-Shaw cell were different due to the changed flow characteristics when the same chemical additive was injected at different times, thus showing the ability to reduce viscosity and form emulsions with different strengths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Anatomy of Bypassed Low Resistivity Low Contrast Hydrocarbon Reservoirs: The Arts of Finding Additional Barrels in a Highly Complex Stratigraphic Geological Setting The Synergy of Surfactant and Nanoparticles: Towards Enhancing Foam Stability Characterization of Barriers to Flow in Burgan Reservoirs Using Geological and Dynamic Pressure Data, Burgan Field, Kuwait. Do the Right Thing at Right Time KOC Way of Integrating Process Safety into Process Related Facility Projects Holistic Approach to Estimate Water Breakthrough; A Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1