TAU性能系统的插件架构

A. Malony, Srinivasan Ramesh, K. Huck, Nicholas Chaimov, S. Shende
{"title":"TAU性能系统的插件架构","authors":"A. Malony, Srinivasan Ramesh, K. Huck, Nicholas Chaimov, S. Shende","doi":"10.1145/3337821.3337916","DOIUrl":null,"url":null,"abstract":"Several robust performance systems have been created for parallel machines with the ability to observe diverse aspects of application execution on different hardware platforms. All of these are designed with the objective to support measurement methods that are efficient, portable, and scalable. For these reasons, the performance measurement infrastructure is tightly embedded with the application code and runtime execution environment. As parallel software and systems evolve, especially towards more heterogeneous, asynchronous, and dynamic operation, it is expected that the requirements for performance observation and awareness will change. For instance, heterogeneous machines introduce new types of performance data to capture and performance behaviors to characterize. Furthermore, there is a growing interest in interacting with the performance infrastructure for in situ analytics and policy-based control. The problem is that an existing performance system architecture could be constrained in its ability to evolve to meet these new requirements. The paper reports our research efforts to address this concern in the context of the TAU Performance System. In particular, we consider the use of a powerful plugin model to both capture existing capabilities in TAU and to extend its functionality in ways it was not necessarily conceived originally. The TAU plugin architecture supports three types of plugin paradigms: EVENT, TRIGGER, and AGENT. We demonstrate how each operates under several different scenarios. Results from larger-scale experiments are shown to highlight the fact that efficiency and robustness can be maintained, while new flexibility and programmability can be offered that leverages the power of the core TAU system while allowing significant and compelling extensions to be realized.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Plugin Architecture for the TAU Performance System\",\"authors\":\"A. Malony, Srinivasan Ramesh, K. Huck, Nicholas Chaimov, S. Shende\",\"doi\":\"10.1145/3337821.3337916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several robust performance systems have been created for parallel machines with the ability to observe diverse aspects of application execution on different hardware platforms. All of these are designed with the objective to support measurement methods that are efficient, portable, and scalable. For these reasons, the performance measurement infrastructure is tightly embedded with the application code and runtime execution environment. As parallel software and systems evolve, especially towards more heterogeneous, asynchronous, and dynamic operation, it is expected that the requirements for performance observation and awareness will change. For instance, heterogeneous machines introduce new types of performance data to capture and performance behaviors to characterize. Furthermore, there is a growing interest in interacting with the performance infrastructure for in situ analytics and policy-based control. The problem is that an existing performance system architecture could be constrained in its ability to evolve to meet these new requirements. The paper reports our research efforts to address this concern in the context of the TAU Performance System. In particular, we consider the use of a powerful plugin model to both capture existing capabilities in TAU and to extend its functionality in ways it was not necessarily conceived originally. The TAU plugin architecture supports three types of plugin paradigms: EVENT, TRIGGER, and AGENT. We demonstrate how each operates under several different scenarios. Results from larger-scale experiments are shown to highlight the fact that efficiency and robustness can be maintained, while new flexibility and programmability can be offered that leverages the power of the core TAU system while allowing significant and compelling extensions to be realized.\",\"PeriodicalId\":405273,\"journal\":{\"name\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3337821.3337916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

已经为并行机器创建了几个健壮的性能系统,这些系统能够观察不同硬件平台上应用程序执行的不同方面。所有这些都是为了支持高效、便携和可扩展的测量方法而设计的。由于这些原因,性能度量基础结构与应用程序代码和运行时执行环境紧密嵌入。随着并行软件和系统的发展,特别是朝着异构、异步和动态操作的方向发展,预计对性能观察和感知的需求将发生变化。例如,异构机器引入了要捕获的新类型的性能数据和要描述的性能行为。此外,人们对与性能基础设施进行交互以实现原位分析和基于策略的控制越来越感兴趣。问题是,现有的性能系统架构在满足这些新需求的能力方面可能受到限制。本文报告了我们在TAU绩效系统背景下解决这一问题的研究努力。特别地,我们考虑使用一个强大的插件模型来捕获TAU中的现有功能,并以一种不一定是最初设想的方式扩展其功能。TAU插件架构支持三种类型的插件范例:EVENT、TRIGGER和AGENT。我们将演示它们在几种不同场景下的操作方式。大规模实验的结果表明,可以保持效率和健壮性,同时可以提供新的灵活性和可编程性,利用核心TAU系统的功能,同时允许实现重要和引人注目的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Plugin Architecture for the TAU Performance System
Several robust performance systems have been created for parallel machines with the ability to observe diverse aspects of application execution on different hardware platforms. All of these are designed with the objective to support measurement methods that are efficient, portable, and scalable. For these reasons, the performance measurement infrastructure is tightly embedded with the application code and runtime execution environment. As parallel software and systems evolve, especially towards more heterogeneous, asynchronous, and dynamic operation, it is expected that the requirements for performance observation and awareness will change. For instance, heterogeneous machines introduce new types of performance data to capture and performance behaviors to characterize. Furthermore, there is a growing interest in interacting with the performance infrastructure for in situ analytics and policy-based control. The problem is that an existing performance system architecture could be constrained in its ability to evolve to meet these new requirements. The paper reports our research efforts to address this concern in the context of the TAU Performance System. In particular, we consider the use of a powerful plugin model to both capture existing capabilities in TAU and to extend its functionality in ways it was not necessarily conceived originally. The TAU plugin architecture supports three types of plugin paradigms: EVENT, TRIGGER, and AGENT. We demonstrate how each operates under several different scenarios. Results from larger-scale experiments are shown to highlight the fact that efficiency and robustness can be maintained, while new flexibility and programmability can be offered that leverages the power of the core TAU system while allowing significant and compelling extensions to be realized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Express Link Placement for NoC-Based Many-Core Platforms Cartesian Collective Communication Artemis A Specialized Concurrent Queue for Scheduling Irregular Workloads on GPUs diBELLA: Distributed Long Read to Long Read Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1