基于脑电图睡眠分期的半监督对抗域自适应数据增强

E. Heremans, Trui Osselaer, N. Seeuws, Huy P Phan, D. Testelmans, M. de Vos
{"title":"基于脑电图睡眠分期的半监督对抗域自适应数据增强","authors":"E. Heremans, Trui Osselaer, N. Seeuws, Huy P Phan, D. Testelmans, M. de Vos","doi":"10.1109/BHI56158.2022.9926942","DOIUrl":null,"url":null,"abstract":"The upcoming era of wearable health monitoring devices has created a need for automated signal processing algorithms that can be trained with a minimal amount of labeled data. In our previous work, we showed that transfer learning techniques like semi-supervised adversarial domain adaptation can help to achieve this. We applied our method to remote sleep monitoring, by performing sleep staging on single-channel wearable EEG signals. In this work, we propose data augmentation to help in tackling this challenge. By using an artificially increased amount of labeled data, our semi-supervised adversarial domain adaptation method improves its performance on the wearable EEG data. The accuracy is increased consistently by 0.6% to 1.4% relative to the results without augmentation. As both adversarial domain adaptation and data augmentation are strategies to deal with the scarceness of data, we conclude that these methods are can effectively be combined to surpass their individual performance.","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data augmentation in semi-supervised adversarial domain adaptation for EEG-based sleep staging\",\"authors\":\"E. Heremans, Trui Osselaer, N. Seeuws, Huy P Phan, D. Testelmans, M. de Vos\",\"doi\":\"10.1109/BHI56158.2022.9926942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The upcoming era of wearable health monitoring devices has created a need for automated signal processing algorithms that can be trained with a minimal amount of labeled data. In our previous work, we showed that transfer learning techniques like semi-supervised adversarial domain adaptation can help to achieve this. We applied our method to remote sleep monitoring, by performing sleep staging on single-channel wearable EEG signals. In this work, we propose data augmentation to help in tackling this challenge. By using an artificially increased amount of labeled data, our semi-supervised adversarial domain adaptation method improves its performance on the wearable EEG data. The accuracy is increased consistently by 0.6% to 1.4% relative to the results without augmentation. As both adversarial domain adaptation and data augmentation are strategies to deal with the scarceness of data, we conclude that these methods are can effectively be combined to surpass their individual performance.\",\"PeriodicalId\":347210,\"journal\":{\"name\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BHI56158.2022.9926942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

即将到来的可穿戴式健康监测设备时代创造了对自动化信号处理算法的需求,这种算法可以用最少的标记数据进行训练。在我们之前的工作中,我们展示了像半监督对抗性领域适应这样的迁移学习技术可以帮助实现这一目标。我们将该方法应用于远程睡眠监测,对单通道可穿戴EEG信号进行睡眠分期。在这项工作中,我们提出数据增强来帮助解决这一挑战。通过人为增加标记数据量,我们的半监督对抗域自适应方法提高了其在可穿戴EEG数据上的性能。相对于没有增强的结果,准确度持续提高0.6%到1.4%。由于对抗域自适应和数据增强都是处理数据稀缺的策略,我们得出结论,这两种方法可以有效地结合起来,以超越它们各自的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data augmentation in semi-supervised adversarial domain adaptation for EEG-based sleep staging
The upcoming era of wearable health monitoring devices has created a need for automated signal processing algorithms that can be trained with a minimal amount of labeled data. In our previous work, we showed that transfer learning techniques like semi-supervised adversarial domain adaptation can help to achieve this. We applied our method to remote sleep monitoring, by performing sleep staging on single-channel wearable EEG signals. In this work, we propose data augmentation to help in tackling this challenge. By using an artificially increased amount of labeled data, our semi-supervised adversarial domain adaptation method improves its performance on the wearable EEG data. The accuracy is increased consistently by 0.6% to 1.4% relative to the results without augmentation. As both adversarial domain adaptation and data augmentation are strategies to deal with the scarceness of data, we conclude that these methods are can effectively be combined to surpass their individual performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BEBOP: Bidirectional dEep Brain cOnnectivity maPping Stabilizing Skeletal Pose Estimation using mmWave Radar via Dynamic Model and Filtering Behavioral Data Categorization for Transformers-based Models in Digital Health Gender Difference in Prognosis of Patients with Heart Failure: A Propensity Score Matching Analysis Influence of Sensor Position and Body Movements on Radar-Based Heart Rate Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1