卷积神经网络中最优卷积核的PCA方法

Philku Lee, Deyeon Kim, Seung Heon Lee, Seon-Hong Kim
{"title":"卷积神经网络中最优卷积核的PCA方法","authors":"Philku Lee, Deyeon Kim, Seung Heon Lee, Seon-Hong Kim","doi":"10.1109/CSCI54926.2021.00017","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have become one of most powerful machine learning models; with enough data, their accuracy in tasks such as image-related classifications and natural language processing is unmatched. The drawback that many scientists have commented on is the fact that these networks, usually trained from randomly-initialized parameters, are black-boxes. This article introduces an innovative variant for CNNs, which incorporates principal components (PCs) derived from well-trained convolution kernels. The variant is called the principal component-incorporating CNN (PC-CNN), in which the PCs are employed either as a complete replacement for randomly-initialized convolution kernels or as an initialization for the convolution kernels to be re-trained. The objective is to help training processes converge to the global minimizer. The PC-CNN is applied for the MNIST handwritten digit dataset to prove its effectiveness.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PCA Approaches for Optimal Convolution Kernels in Convolutional Neural Networks\",\"authors\":\"Philku Lee, Deyeon Kim, Seung Heon Lee, Seon-Hong Kim\",\"doi\":\"10.1109/CSCI54926.2021.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) have become one of most powerful machine learning models; with enough data, their accuracy in tasks such as image-related classifications and natural language processing is unmatched. The drawback that many scientists have commented on is the fact that these networks, usually trained from randomly-initialized parameters, are black-boxes. This article introduces an innovative variant for CNNs, which incorporates principal components (PCs) derived from well-trained convolution kernels. The variant is called the principal component-incorporating CNN (PC-CNN), in which the PCs are employed either as a complete replacement for randomly-initialized convolution kernels or as an initialization for the convolution kernels to be re-trained. The objective is to help training processes converge to the global minimizer. The PC-CNN is applied for the MNIST handwritten digit dataset to prove its effectiveness.\",\"PeriodicalId\":206881,\"journal\":{\"name\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI54926.2021.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(cnn)已经成为最强大的机器学习模型之一;有了足够的数据,它们在图像相关分类和自然语言处理等任务中的准确性是无与伦比的。许多科学家评论的缺点是,这些网络通常是从随机初始化的参数中训练出来的,是黑盒。本文介绍了cnn的一种创新变体,它包含了来自训练良好的卷积核的主成分(pc)。这种变体被称为结合主成分的CNN (PC-CNN),其中pc要么被用作随机初始化卷积核的完全替代,要么被用作重新训练卷积核的初始化。目标是帮助训练过程收敛到全局最小值。将PC-CNN应用于MNIST手写数字数据集,验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PCA Approaches for Optimal Convolution Kernels in Convolutional Neural Networks
Convolutional neural networks (CNNs) have become one of most powerful machine learning models; with enough data, their accuracy in tasks such as image-related classifications and natural language processing is unmatched. The drawback that many scientists have commented on is the fact that these networks, usually trained from randomly-initialized parameters, are black-boxes. This article introduces an innovative variant for CNNs, which incorporates principal components (PCs) derived from well-trained convolution kernels. The variant is called the principal component-incorporating CNN (PC-CNN), in which the PCs are employed either as a complete replacement for randomly-initialized convolution kernels or as an initialization for the convolution kernels to be re-trained. The objective is to help training processes converge to the global minimizer. The PC-CNN is applied for the MNIST handwritten digit dataset to prove its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remote Video Surveillance Effects of Social Distancing Intention, Affective Risk Perception, and Cabin Fever Syndrome on Perceived Value of E-learning : Type of submission: Late Breaking Paper / Most relevant symposium: CSCI-ISED Cybersecurity Integration: Deploying Critical Infrastructure Security and Resilience Topics into the Undergraduate Curriculum Distributed Algorithms for k-Coverage in Mobile Sensor Networks Software Development Methodologies for Virtual Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1