在多核处理器上整合高完整性、高性能和网络安全功能

B. D. de Dinechin
{"title":"在多核处理器上整合高完整性、高性能和网络安全功能","authors":"B. D. de Dinechin","doi":"10.1145/3316781.3323473","DOIUrl":null,"url":null,"abstract":"The requirement of high performance computing at low power can be met by the parallel execution of an application on a possibly large number of programmable cores. However, the lack of accurate timing properties may prevent parallel execution from being applicable to time-critical applications. This problem has been addressed by suitably designing the architecture, implementation, and programming models, of the Kalray MPPA (Multi-Purpose Processor Array) family of single-chip many-core processors. We introduce the third-generation MPPA processor, whose key features are motivated by the high-performance and high-integrity functions of automated vehicles. High-performance computing functions, represented by deep learning inference and by computer vision, need to execute under soft real-time constraints. High-integrity functions are developed under model-based design, and must meet hard real-time constraints. Finally, the third-generation MPPA processor integrates a hardware root of trust, and its security architecture is able to support a security kernel for implementing the trusted execution environment functions required by applications.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Consolidating High-Integrity, High-Performance, and Cyber-Security Functions on a Manycore Processor\",\"authors\":\"B. D. de Dinechin\",\"doi\":\"10.1145/3316781.3323473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The requirement of high performance computing at low power can be met by the parallel execution of an application on a possibly large number of programmable cores. However, the lack of accurate timing properties may prevent parallel execution from being applicable to time-critical applications. This problem has been addressed by suitably designing the architecture, implementation, and programming models, of the Kalray MPPA (Multi-Purpose Processor Array) family of single-chip many-core processors. We introduce the third-generation MPPA processor, whose key features are motivated by the high-performance and high-integrity functions of automated vehicles. High-performance computing functions, represented by deep learning inference and by computer vision, need to execute under soft real-time constraints. High-integrity functions are developed under model-based design, and must meet hard real-time constraints. Finally, the third-generation MPPA processor integrates a hardware root of trust, and its security architecture is able to support a security kernel for implementing the trusted execution environment functions required by applications.\",\"PeriodicalId\":391209,\"journal\":{\"name\":\"Proceedings of the 56th Annual Design Automation Conference 2019\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 56th Annual Design Automation Conference 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3316781.3323473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3323473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过在可能大量的可编程核上并行执行应用程序,可以满足低功耗下高性能计算的要求。然而,缺乏精确的计时属性可能会妨碍并行执行适用于时间要求严格的应用程序。通过适当地设计Kalray MPPA(多用途处理器阵列)系列单芯片多核处理器的体系结构、实现和编程模型,解决了这个问题。我们推出了第三代MPPA处理器,其主要特点是由自动驾驶汽车的高性能和高完整性功能驱动的。以深度学习推理和计算机视觉为代表的高性能计算功能需要在软实时约束下执行。高完整性功能是在基于模型的设计下开发的,必须满足硬实时性约束。最后,第三代MPPA处理器集成了硬件信任根,其安全体系结构能够支持安全内核来实现应用程序所需的可信执行环境功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Consolidating High-Integrity, High-Performance, and Cyber-Security Functions on a Manycore Processor
The requirement of high performance computing at low power can be met by the parallel execution of an application on a possibly large number of programmable cores. However, the lack of accurate timing properties may prevent parallel execution from being applicable to time-critical applications. This problem has been addressed by suitably designing the architecture, implementation, and programming models, of the Kalray MPPA (Multi-Purpose Processor Array) family of single-chip many-core processors. We introduce the third-generation MPPA processor, whose key features are motivated by the high-performance and high-integrity functions of automated vehicles. High-performance computing functions, represented by deep learning inference and by computer vision, need to execute under soft real-time constraints. High-integrity functions are developed under model-based design, and must meet hard real-time constraints. Finally, the third-generation MPPA processor integrates a hardware root of trust, and its security architecture is able to support a security kernel for implementing the trusted execution environment functions required by applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LODESTAR DHOOM Filianore ChipSecure MRLoc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1