螺旋桨重叠对大型串联无人机性能的影响

A. Weishäupl, S. Prior
{"title":"螺旋桨重叠对大型串联无人机性能的影响","authors":"A. Weishäupl, S. Prior","doi":"10.1142/S2301385019500092","DOIUrl":null,"url":null,"abstract":"This paper investigates the interference that arises from overlapping Unmanned Aerial Vehicle (UAV) propellers during hovering flight. The tests have been conducted on [Formula: see text] ultralight carbon fiber propellers using a bespoke mount and the RCBenchmark Series 1780 dynamometer at various degrees of overlap [Formula: see text] and vertical separation [Formula: see text]. A great deal of confusion regarding the losses that are associated with mounting propellers in a co-axial configuration is reported in the literature, with a summary of historical tandem helicopters having been conducted. The results highlight a region of beneficial overlap (0–20%), which has the potential to be advantageous to a wide range of UAVs.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Influence of Propeller Overlap on Large-Scale Tandem UAV Performance\",\"authors\":\"A. Weishäupl, S. Prior\",\"doi\":\"10.1142/S2301385019500092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the interference that arises from overlapping Unmanned Aerial Vehicle (UAV) propellers during hovering flight. The tests have been conducted on [Formula: see text] ultralight carbon fiber propellers using a bespoke mount and the RCBenchmark Series 1780 dynamometer at various degrees of overlap [Formula: see text] and vertical separation [Formula: see text]. A great deal of confusion regarding the losses that are associated with mounting propellers in a co-axial configuration is reported in the literature, with a summary of historical tandem helicopters having been conducted. The results highlight a region of beneficial overlap (0–20%), which has the potential to be advantageous to a wide range of UAVs.\",\"PeriodicalId\":164619,\"journal\":{\"name\":\"Unmanned Syst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unmanned Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2301385019500092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2301385019500092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了无人机在悬停飞行过程中螺旋桨重叠产生的干扰问题。使用定制支架和RCBenchmark系列1780测力仪对超轻型碳纤维螺旋桨进行了不同程度的重叠[公式:见文本]和垂直分离[公式:见文本]的测试。文献中报道了大量与同轴配置安装螺旋桨相关的损失的混淆,并对历史上的串联直升机进行了总结。结果突出了一个有利的重叠区域(0-20%),该区域具有对大范围无人机有利的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Propeller Overlap on Large-Scale Tandem UAV Performance
This paper investigates the interference that arises from overlapping Unmanned Aerial Vehicle (UAV) propellers during hovering flight. The tests have been conducted on [Formula: see text] ultralight carbon fiber propellers using a bespoke mount and the RCBenchmark Series 1780 dynamometer at various degrees of overlap [Formula: see text] and vertical separation [Formula: see text]. A great deal of confusion regarding the losses that are associated with mounting propellers in a co-axial configuration is reported in the literature, with a summary of historical tandem helicopters having been conducted. The results highlight a region of beneficial overlap (0–20%), which has the potential to be advantageous to a wide range of UAVs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Special Issue on Perception, Decision and Control of Unmanned Systems Under Complex Conditions Modeling and Quantitative Evaluation Method of Environmental Complexity for Measuring Autonomous Capabilities of Military Unmanned Ground Vehicles Recent Developments in Event-Triggered Control of Nonlinear Systems: An Overview Physical Modeling, Simulation and Validation of Small Fixed-Wing UAV An Improved RRT* UAV Formation Path Planning Algorithm Based on Goal Bias and Node Rejection Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1