{"title":"AL机器人语言的操作空间运动规范","authors":"C. Cai, T. Binford","doi":"10.1109/ROBOT.1987.1087760","DOIUrl":null,"url":null,"abstract":"A new version of the AL language system has been implemented, with emphasis on the specifications for an object's motion in operational space under trajectory planning, and flexible grasping. This paper discusses specifications of object geometry, Cartesian trajectory, control frame calculation from the trajectory and geometry, and motion constraints with respect to the control frame. A simple inverse of a Jacobian matrix linking the control frame to joint space variables is also presented.","PeriodicalId":438447,"journal":{"name":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operational space motion specification in AL robot language\",\"authors\":\"C. Cai, T. Binford\",\"doi\":\"10.1109/ROBOT.1987.1087760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new version of the AL language system has been implemented, with emphasis on the specifications for an object's motion in operational space under trajectory planning, and flexible grasping. This paper discusses specifications of object geometry, Cartesian trajectory, control frame calculation from the trajectory and geometry, and motion constraints with respect to the control frame. A simple inverse of a Jacobian matrix linking the control frame to joint space variables is also presented.\",\"PeriodicalId\":438447,\"journal\":{\"name\":\"Proceedings. 1987 IEEE International Conference on Robotics and Automation\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1987 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1987.1087760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1987.1087760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operational space motion specification in AL robot language
A new version of the AL language system has been implemented, with emphasis on the specifications for an object's motion in operational space under trajectory planning, and flexible grasping. This paper discusses specifications of object geometry, Cartesian trajectory, control frame calculation from the trajectory and geometry, and motion constraints with respect to the control frame. A simple inverse of a Jacobian matrix linking the control frame to joint space variables is also presented.