基于一种新的自适应拥塞控制的增强随机早期检测

Sunday Barde Danladi, Faruku Umar Ambursa
{"title":"基于一种新的自适应拥塞控制的增强随机早期检测","authors":"Sunday Barde Danladi, Faruku Umar Ambursa","doi":"10.1109/ICECCO48375.2019.9043276","DOIUrl":null,"url":null,"abstract":"Over the years congestion has been a major issue affecting the internet leading to an increase in packet loss and delay. Researchers have proposed different algorithms to address the issue of congestion from Drop Tail, Early Random Drop to Active Queue Management (AQM). Random Early Detection (RED) is the first Active Queue Management (AQM) technique that was developed to support transport-layer congestion and decrease the impacts of network congestion on the router buffer. The idea behind RED is to sense and detect incipient congestion early and notify connections of congestion either by dropping packets arriving or by reducing its sending rate. Although various other AQM techniques have been proposed by researchers, RED is still the most commonly used algorithm for congestion avoidance and researches is still ongoing to enhance the performance of RED. In this paper, we have developed an extension to RED to address the limitation of RED and the algorithm is then compared with RED under various network scenarios. The results of the evaluation shows that the new method has outperformed RED.","PeriodicalId":166322,"journal":{"name":"2019 15th International Conference on Electronics, Computer and Computation (ICECCO)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"DyRED: An Enhanced Random Early Detection Based on a new Adaptive Congestion Control\",\"authors\":\"Sunday Barde Danladi, Faruku Umar Ambursa\",\"doi\":\"10.1109/ICECCO48375.2019.9043276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the years congestion has been a major issue affecting the internet leading to an increase in packet loss and delay. Researchers have proposed different algorithms to address the issue of congestion from Drop Tail, Early Random Drop to Active Queue Management (AQM). Random Early Detection (RED) is the first Active Queue Management (AQM) technique that was developed to support transport-layer congestion and decrease the impacts of network congestion on the router buffer. The idea behind RED is to sense and detect incipient congestion early and notify connections of congestion either by dropping packets arriving or by reducing its sending rate. Although various other AQM techniques have been proposed by researchers, RED is still the most commonly used algorithm for congestion avoidance and researches is still ongoing to enhance the performance of RED. In this paper, we have developed an extension to RED to address the limitation of RED and the algorithm is then compared with RED under various network scenarios. The results of the evaluation shows that the new method has outperformed RED.\",\"PeriodicalId\":166322,\"journal\":{\"name\":\"2019 15th International Conference on Electronics, Computer and Computation (ICECCO)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Electronics, Computer and Computation (ICECCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCO48375.2019.9043276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Electronics, Computer and Computation (ICECCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCO48375.2019.9043276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

多年来,拥塞一直是影响互联网的主要问题,导致数据包丢失和延迟增加。研究人员提出了不同的算法来解决拥塞问题,从丢尾、早期随机丢丢到主动队列管理(AQM)。随机早期检测(RED)是第一个主动队列管理(AQM)技术,它是为了支持传输层拥塞和减少网络拥塞对路由器缓冲区的影响而开发的。RED背后的思想是早期感知和检测早期拥塞,并通过丢弃到达的数据包或降低其发送速率来通知连接拥塞。尽管研究者们已经提出了各种各样的其他AQM技术,但RED仍然是最常用的拥塞避免算法,并且研究仍在继续提高RED的性能。在本文中,我们开发了RED的扩展以解决RED的局限性,然后在各种网络场景下将该算法与RED进行比较。评价结果表明,新方法优于RED方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DyRED: An Enhanced Random Early Detection Based on a new Adaptive Congestion Control
Over the years congestion has been a major issue affecting the internet leading to an increase in packet loss and delay. Researchers have proposed different algorithms to address the issue of congestion from Drop Tail, Early Random Drop to Active Queue Management (AQM). Random Early Detection (RED) is the first Active Queue Management (AQM) technique that was developed to support transport-layer congestion and decrease the impacts of network congestion on the router buffer. The idea behind RED is to sense and detect incipient congestion early and notify connections of congestion either by dropping packets arriving or by reducing its sending rate. Although various other AQM techniques have been proposed by researchers, RED is still the most commonly used algorithm for congestion avoidance and researches is still ongoing to enhance the performance of RED. In this paper, we have developed an extension to RED to address the limitation of RED and the algorithm is then compared with RED under various network scenarios. The results of the evaluation shows that the new method has outperformed RED.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Investigation into Peer-to-Peer Network Security Using Wireshark Greenhouse Monitoring and Control System with an Arduino System Transfer Learning Based Histopathologic Image Classification for Burns Recognition Modelling And Realization of a Compact CPW Transmission Lines Using 3D Mmics Technology in ADS Momentum Review of Advances in Machine Learning Based Protein Secondary Structure Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1