{"title":"AQFP电路中缓冲器和分配器插入的超局部最优性","authors":"Siang-Yun Lee, Heinz Riener, G. De Micheli","doi":"10.1145/3489517.3530661","DOIUrl":null,"url":null,"abstract":"Adiabatic quantum-flux parametron (AQFP) is an energy-efficient superconducting technology. Buffer and splitter (B/S) cells must be inserted to an AQFP circuit to meet the technology-imposed constraints on path balancing and fanout branching. These cells account for a significant amount of the circuit's area and delay. In this paper, we identify that B/S insertion is a scheduling problem, and propose (a) a linear-time algorithm for locally optimal B/S insertion subject to a given schedule; (b) an SMT formulation to find the global optimum; and (c) an efficient heuristic for global B/S optimization. Experimental results show a reduction of 4% on the B/S cost and 124X speed-up compared to the state-of-the-art algorithm, and capability to scale to a magnitude larger benchmarks.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Beyond local optimality of buffer and splitter insertion for AQFP circuits\",\"authors\":\"Siang-Yun Lee, Heinz Riener, G. De Micheli\",\"doi\":\"10.1145/3489517.3530661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adiabatic quantum-flux parametron (AQFP) is an energy-efficient superconducting technology. Buffer and splitter (B/S) cells must be inserted to an AQFP circuit to meet the technology-imposed constraints on path balancing and fanout branching. These cells account for a significant amount of the circuit's area and delay. In this paper, we identify that B/S insertion is a scheduling problem, and propose (a) a linear-time algorithm for locally optimal B/S insertion subject to a given schedule; (b) an SMT formulation to find the global optimum; and (c) an efficient heuristic for global B/S optimization. Experimental results show a reduction of 4% on the B/S cost and 124X speed-up compared to the state-of-the-art algorithm, and capability to scale to a magnitude larger benchmarks.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Beyond local optimality of buffer and splitter insertion for AQFP circuits
Adiabatic quantum-flux parametron (AQFP) is an energy-efficient superconducting technology. Buffer and splitter (B/S) cells must be inserted to an AQFP circuit to meet the technology-imposed constraints on path balancing and fanout branching. These cells account for a significant amount of the circuit's area and delay. In this paper, we identify that B/S insertion is a scheduling problem, and propose (a) a linear-time algorithm for locally optimal B/S insertion subject to a given schedule; (b) an SMT formulation to find the global optimum; and (c) an efficient heuristic for global B/S optimization. Experimental results show a reduction of 4% on the B/S cost and 124X speed-up compared to the state-of-the-art algorithm, and capability to scale to a magnitude larger benchmarks.