FASSST:基于快速注意力的单阶段实时实例分割网络

Yuan Cheng, Rui Lin, Peining Zhen, Tianshu Hou, C. Ng, Hai-Bao Chen, Hao Yu, Ngai Wong
{"title":"FASSST:基于快速注意力的单阶段实时实例分割网络","authors":"Yuan Cheng, Rui Lin, Peining Zhen, Tianshu Hou, C. Ng, Hai-Bao Chen, Hao Yu, Ngai Wong","doi":"10.1109/WACV51458.2022.00277","DOIUrl":null,"url":null,"abstract":"Real-time instance segmentation is crucial in various AI applications. This work designs a network named Fast Attention based Single-Stage Segmentation NeT (FASSST) that performs instance segmentation with video-grade speed. Using an instance attention module (IAM), FASSST quickly locates target instances and segments with region of interest (ROI) feature fusion (RFF) aggregating ROI features from pyramid mask layers. The module employs an efficient single-stage feature regression, straight from features to instance coordinates and class probabilities. Experiments on COCO and CityScapes datasets show that FASSST achieves state-of-the-art performance under competitive accuracy: real-time inference of 47.5FPS on a GTX1080Ti GPU and 5.3FPS on a Jetson Xavier NX board with only 71.6 GFLOPs.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FASSST: Fast Attention Based Single-Stage Segmentation Net for Real-Time Instance Segmentation\",\"authors\":\"Yuan Cheng, Rui Lin, Peining Zhen, Tianshu Hou, C. Ng, Hai-Bao Chen, Hao Yu, Ngai Wong\",\"doi\":\"10.1109/WACV51458.2022.00277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time instance segmentation is crucial in various AI applications. This work designs a network named Fast Attention based Single-Stage Segmentation NeT (FASSST) that performs instance segmentation with video-grade speed. Using an instance attention module (IAM), FASSST quickly locates target instances and segments with region of interest (ROI) feature fusion (RFF) aggregating ROI features from pyramid mask layers. The module employs an efficient single-stage feature regression, straight from features to instance coordinates and class probabilities. Experiments on COCO and CityScapes datasets show that FASSST achieves state-of-the-art performance under competitive accuracy: real-time inference of 47.5FPS on a GTX1080Ti GPU and 5.3FPS on a Jetson Xavier NX board with only 71.6 GFLOPs.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

实时实例分割在各种人工智能应用中至关重要。本文设计了一个基于快速注意力的单阶段分割网络(Fast Attention based Single-Stage Segmentation NeT, FASSST),以视频级的速度进行实例分割。FASSST使用实例关注模块(IAM),利用感兴趣区域(ROI)特征融合(RFF)从金字塔掩模层中聚合ROI特征,快速定位目标实例和段。该模块采用高效的单阶段特征回归,直接从特征到实例坐标和类概率。在COCO和cityscape数据集上的实验表明,FASSST在竞争精度下达到了最先进的性能:在GTX1080Ti GPU上的实时推理速度为47.5FPS,在Jetson Xavier NX板上的实时推理速度为5.3FPS,仅为71.6 GFLOPs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FASSST: Fast Attention Based Single-Stage Segmentation Net for Real-Time Instance Segmentation
Real-time instance segmentation is crucial in various AI applications. This work designs a network named Fast Attention based Single-Stage Segmentation NeT (FASSST) that performs instance segmentation with video-grade speed. Using an instance attention module (IAM), FASSST quickly locates target instances and segments with region of interest (ROI) feature fusion (RFF) aggregating ROI features from pyramid mask layers. The module employs an efficient single-stage feature regression, straight from features to instance coordinates and class probabilities. Experiments on COCO and CityScapes datasets show that FASSST achieves state-of-the-art performance under competitive accuracy: real-time inference of 47.5FPS on a GTX1080Ti GPU and 5.3FPS on a Jetson Xavier NX board with only 71.6 GFLOPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Learning for Human Sensing Using Radio Signals AirCamRTM: Enhancing Vehicle Detection for Efficient Aerial Camera-based Road Traffic Monitoring QUALIFIER: Question-Guided Self-Attentive Multimodal Fusion Network for Audio Visual Scene-Aware Dialog Transductive Weakly-Supervised Player Detection using Soccer Broadcast Videos Inpaint2Learn: A Self-Supervised Framework for Affordance Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1