{"title":"在安装流动应用程序时,欺诈者指纹的形成方法","authors":"T. Polhul, A. Yarovyi","doi":"10.1109/IDAACS.2019.8924369","DOIUrl":null,"url":null,"abstract":"This study aimed to develop a method of fraudster fingerprint formation during mobile application installations, based on a fuzzy model for fraudster fingerprint formation and algorithms of its use for fraudster fingerprint formation. This method allows determining the reason of labeling user by a particular class during fraud detection. The use of the developed method in fraud detection tasks makes it possible to correctly identify 99.56% of users in general and 80.43% of correctly determined fraudsters in particular and speed up the fraud detection process.","PeriodicalId":415006,"journal":{"name":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method of Fraudster Fingerprint Formation During Mobile Application Installations\",\"authors\":\"T. Polhul, A. Yarovyi\",\"doi\":\"10.1109/IDAACS.2019.8924369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to develop a method of fraudster fingerprint formation during mobile application installations, based on a fuzzy model for fraudster fingerprint formation and algorithms of its use for fraudster fingerprint formation. This method allows determining the reason of labeling user by a particular class during fraud detection. The use of the developed method in fraud detection tasks makes it possible to correctly identify 99.56% of users in general and 80.43% of correctly determined fraudsters in particular and speed up the fraud detection process.\",\"PeriodicalId\":415006,\"journal\":{\"name\":\"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)\",\"volume\":\"254 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAACS.2019.8924369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2019.8924369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在基于欺诈者指纹形成的模糊模型及其用于欺诈者指纹形成的算法,开发一种在移动应用程序安装过程中欺诈者指纹形成的方法。该方法允许在欺诈检测期间确定由特定类标记用户的原因。在欺诈检测任务中使用所开发的方法,可以正确识别99.56%的一般用户和80.43%正确确定的特定欺诈者,并加快欺诈检测过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Method of Fraudster Fingerprint Formation During Mobile Application Installations
This study aimed to develop a method of fraudster fingerprint formation during mobile application installations, based on a fuzzy model for fraudster fingerprint formation and algorithms of its use for fraudster fingerprint formation. This method allows determining the reason of labeling user by a particular class during fraud detection. The use of the developed method in fraud detection tasks makes it possible to correctly identify 99.56% of users in general and 80.43% of correctly determined fraudsters in particular and speed up the fraud detection process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Optimum Placement of Access Points in Indoor Positioning Systems On Development of Machine Learning Models with Aim of Medical Differential Diagnostics of the Comorbid States Business Models for Wireless AAL Systems — Financing Strategies Accuracy Enhancement of a Blind Image Steganalysis Approach Using Dynamic Learning Rate-Based CNN on GPUs Human-Machine Interaction in the Remote Control System of Electric Charging Stations Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1