{"title":"基于SPH方法的结构高速冲击动力响应","authors":"Z. S. Liu, S. Swaddiwudhipong, C. Koh","doi":"10.1142/S146587630400240X","DOIUrl":null,"url":null,"abstract":"This paper presents the dynamic response of structures under high velocity impact loading using Smooth Particle Hydrodynamics (SPH) approach. The SPH equations governing the elastic and elasto-plastic large deformation dynamic response of solid structure are derived. The proposed additional stress points are introduced in the formulation in order to mitigate the tensile instability inherent in the SPH approach. The incremental rate approach is combined with the leap-frog scheme of time integration forming solution algorithm adopted in present study. Examples on high velocity impact of the solids are presented and results from the proposed SPH approach compared with available finite element solution illustrating that the transient dynamic response under high velocity impact can be effectively solved by the proposed SPH approach.","PeriodicalId":331001,"journal":{"name":"Int. J. Comput. Eng. Sci.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"High velocity impact dynamic response of structures using SPH method\",\"authors\":\"Z. S. Liu, S. Swaddiwudhipong, C. Koh\",\"doi\":\"10.1142/S146587630400240X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the dynamic response of structures under high velocity impact loading using Smooth Particle Hydrodynamics (SPH) approach. The SPH equations governing the elastic and elasto-plastic large deformation dynamic response of solid structure are derived. The proposed additional stress points are introduced in the formulation in order to mitigate the tensile instability inherent in the SPH approach. The incremental rate approach is combined with the leap-frog scheme of time integration forming solution algorithm adopted in present study. Examples on high velocity impact of the solids are presented and results from the proposed SPH approach compared with available finite element solution illustrating that the transient dynamic response under high velocity impact can be effectively solved by the proposed SPH approach.\",\"PeriodicalId\":331001,\"journal\":{\"name\":\"Int. J. Comput. Eng. Sci.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Eng. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S146587630400240X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Eng. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S146587630400240X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High velocity impact dynamic response of structures using SPH method
This paper presents the dynamic response of structures under high velocity impact loading using Smooth Particle Hydrodynamics (SPH) approach. The SPH equations governing the elastic and elasto-plastic large deformation dynamic response of solid structure are derived. The proposed additional stress points are introduced in the formulation in order to mitigate the tensile instability inherent in the SPH approach. The incremental rate approach is combined with the leap-frog scheme of time integration forming solution algorithm adopted in present study. Examples on high velocity impact of the solids are presented and results from the proposed SPH approach compared with available finite element solution illustrating that the transient dynamic response under high velocity impact can be effectively solved by the proposed SPH approach.