{"title":"动态减少高估的多核设计余量","authors":"Toshinori Sato, Takanori Hayashida, Ken Yano","doi":"10.1109/HPCSim.2012.6266944","DOIUrl":null,"url":null,"abstract":"MultiCore processor is one of the promising techniques to satisfy computing demands of the future consumer devices. However, MultiCore processor is still threatened by increasing energy consumption due to PVT (Process-Voltage-Temperature) variations. They require large design margins in the supply voltage, resulting in large energy consumption. The combination of DVS (Dynamic voltage scaling) technique and Canary FF (flip-flop), named Canary-DVS, has been proposed to eliminate the overestimated voltage margin but has only been evaluated under the assumption of typical delay. This paper considers C2C (Core-to-Core) variations and evaluates how Canary-DVS eliminates the energy waste under the practical assumption of delay variations. We adopt Canary-DVS to a commercial processor, Toshiba's quad-core Media embedded Processor (MeP). From Monte Carlo simulations, it is found that energy is reduced by 18.6% on average and there are not any noticeable discrepancies from the typical situations, when 0.064 of σ/μ value is assumed in gate delay.","PeriodicalId":428764,"journal":{"name":"2012 International Conference on High Performance Computing & Simulation (HPCS)","volume":"418 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamically reducing overestimated design margin of MultiCores\",\"authors\":\"Toshinori Sato, Takanori Hayashida, Ken Yano\",\"doi\":\"10.1109/HPCSim.2012.6266944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MultiCore processor is one of the promising techniques to satisfy computing demands of the future consumer devices. However, MultiCore processor is still threatened by increasing energy consumption due to PVT (Process-Voltage-Temperature) variations. They require large design margins in the supply voltage, resulting in large energy consumption. The combination of DVS (Dynamic voltage scaling) technique and Canary FF (flip-flop), named Canary-DVS, has been proposed to eliminate the overestimated voltage margin but has only been evaluated under the assumption of typical delay. This paper considers C2C (Core-to-Core) variations and evaluates how Canary-DVS eliminates the energy waste under the practical assumption of delay variations. We adopt Canary-DVS to a commercial processor, Toshiba's quad-core Media embedded Processor (MeP). From Monte Carlo simulations, it is found that energy is reduced by 18.6% on average and there are not any noticeable discrepancies from the typical situations, when 0.064 of σ/μ value is assumed in gate delay.\",\"PeriodicalId\":428764,\"journal\":{\"name\":\"2012 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"418 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSim.2012.6266944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2012.6266944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamically reducing overestimated design margin of MultiCores
MultiCore processor is one of the promising techniques to satisfy computing demands of the future consumer devices. However, MultiCore processor is still threatened by increasing energy consumption due to PVT (Process-Voltage-Temperature) variations. They require large design margins in the supply voltage, resulting in large energy consumption. The combination of DVS (Dynamic voltage scaling) technique and Canary FF (flip-flop), named Canary-DVS, has been proposed to eliminate the overestimated voltage margin but has only been evaluated under the assumption of typical delay. This paper considers C2C (Core-to-Core) variations and evaluates how Canary-DVS eliminates the energy waste under the practical assumption of delay variations. We adopt Canary-DVS to a commercial processor, Toshiba's quad-core Media embedded Processor (MeP). From Monte Carlo simulations, it is found that energy is reduced by 18.6% on average and there are not any noticeable discrepancies from the typical situations, when 0.064 of σ/μ value is assumed in gate delay.