近似高斯消除拉普拉斯-快速,稀疏,简单

Rasmus Kyng, Sushant Sachdeva
{"title":"近似高斯消除拉普拉斯-快速,稀疏,简单","authors":"Rasmus Kyng, Sushant Sachdeva","doi":"10.1109/FOCS.2016.68","DOIUrl":null,"url":null,"abstract":"We show how to perform sparse approximate Gaussian elimination for Laplacian matrices. We present a simple, nearly linear time algorithm that approximates a Laplacian by the product of a sparse lower triangular matrix with its transpose. This gives the first nearly linear time solver for Laplacian systems that is based purely on random sampling, and does not use any graph theoretic constructions such as low-stretch trees, sparsifiers, or expanders. Our algorithm performs a subsampled Cholesky factorization, which we analyze using matrix martingales. As part of the analysis, we give a proof of a concentration inequality for matrix martingales where the differences are sums of conditionally independent variables.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"164","resultStr":"{\"title\":\"Approximate Gaussian Elimination for Laplacians - Fast, Sparse, and Simple\",\"authors\":\"Rasmus Kyng, Sushant Sachdeva\",\"doi\":\"10.1109/FOCS.2016.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how to perform sparse approximate Gaussian elimination for Laplacian matrices. We present a simple, nearly linear time algorithm that approximates a Laplacian by the product of a sparse lower triangular matrix with its transpose. This gives the first nearly linear time solver for Laplacian systems that is based purely on random sampling, and does not use any graph theoretic constructions such as low-stretch trees, sparsifiers, or expanders. Our algorithm performs a subsampled Cholesky factorization, which we analyze using matrix martingales. As part of the analysis, we give a proof of a concentration inequality for matrix martingales where the differences are sums of conditionally independent variables.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"164\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 164

摘要

我们展示了如何对拉普拉斯矩阵进行稀疏近似高斯消去。我们提出了一个简单的,近线性的时间算法,它通过一个稀疏下三角矩阵与其转置的乘积来近似拉普拉斯矩阵。这给出了拉普拉斯系统的第一个近线性时间解算器,它完全基于随机抽样,不使用任何图论结构,如低拉伸树、稀疏化器或扩展器。我们的算法执行一个次抽样的Cholesky分解,我们使用矩阵鞅来分析它。作为分析的一部分,我们给出了一个矩阵鞅集中不等式的证明,其中差是条件自变量的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate Gaussian Elimination for Laplacians - Fast, Sparse, and Simple
We show how to perform sparse approximate Gaussian elimination for Laplacian matrices. We present a simple, nearly linear time algorithm that approximates a Laplacian by the product of a sparse lower triangular matrix with its transpose. This gives the first nearly linear time solver for Laplacian systems that is based purely on random sampling, and does not use any graph theoretic constructions such as low-stretch trees, sparsifiers, or expanders. Our algorithm performs a subsampled Cholesky factorization, which we analyze using matrix martingales. As part of the analysis, we give a proof of a concentration inequality for matrix martingales where the differences are sums of conditionally independent variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exponential Lower Bounds for Monotone Span Programs Truly Sub-cubic Algorithms for Language Edit Distance and RNA-Folding via Fast Bounded-Difference Min-Plus Product Polynomial-Time Tensor Decompositions with Sum-of-Squares Decremental Single-Source Reachability and Strongly Connected Components in Õ(m√n) Total Update Time NP-Hardness of Reed-Solomon Decoding and the Prouhet-Tarry-Escott Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1