在多项式时间内学习单调决策树

Ryan O'Donnell, R. Servedio
{"title":"在多项式时间内学习单调决策树","authors":"Ryan O'Donnell, R. Servedio","doi":"10.1137/060669309","DOIUrl":null,"url":null,"abstract":"We give an algorithm that learns any monotone Boolean function f: {-1, 1}n rarr {-1, 1} to any constant accuracy, under the uniform distribution, in time polynomial in n and in the decision tree size of f. This is the first algorithm that can learn arbitrary monotone Boolean functions to high accuracy, using random examples only, in time polynomial in a reasonable measure of the complexity of f. A key ingredient of the result is a new bound showing that the average sensitivity of any monotone function computed by a decision tree of size s must be at most radic(log s). This bound has already proved to be of independent utility in the study of decision tree complexity (Schramm et al., 2005). We generalize the basic inequality and learning result described above in various ways; specifically, to partition size (a stronger complexity measure than decision tree size), p-biased measures over the Boolean cube (rather than just the uniform distribution), and real-valued (rather than just Boolean-valued) functions","PeriodicalId":325664,"journal":{"name":"21st Annual IEEE Conference on Computational Complexity (CCC'06)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"Learning monotone decision trees in polynomial time\",\"authors\":\"Ryan O'Donnell, R. Servedio\",\"doi\":\"10.1137/060669309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an algorithm that learns any monotone Boolean function f: {-1, 1}n rarr {-1, 1} to any constant accuracy, under the uniform distribution, in time polynomial in n and in the decision tree size of f. This is the first algorithm that can learn arbitrary monotone Boolean functions to high accuracy, using random examples only, in time polynomial in a reasonable measure of the complexity of f. A key ingredient of the result is a new bound showing that the average sensitivity of any monotone function computed by a decision tree of size s must be at most radic(log s). This bound has already proved to be of independent utility in the study of decision tree complexity (Schramm et al., 2005). We generalize the basic inequality and learning result described above in various ways; specifically, to partition size (a stronger complexity measure than decision tree size), p-biased measures over the Boolean cube (rather than just the uniform distribution), and real-valued (rather than just Boolean-valued) functions\",\"PeriodicalId\":325664,\"journal\":{\"name\":\"21st Annual IEEE Conference on Computational Complexity (CCC'06)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st Annual IEEE Conference on Computational Complexity (CCC'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/060669309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st Annual IEEE Conference on Computational Complexity (CCC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/060669309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

摘要

我们给出了一个算法,可以学习任何单调布尔函数f:{- 1,1}n rarr{- 1,1}到任意常数精度,在均匀分布下,在n的时间多项式内,在f的决策树大小内。这是第一个仅使用随机样本就能高精度学习任意单调布尔函数的算法。该结果的一个关键组成部分是一个新的界,表明由大小为s的决策树计算的任何单调函数的平均灵敏度必须最多为径向(log s)。该界已经被证明在决策树复杂性的研究中具有独立的效用(Schramm et al., 2005)。我们将上述的基本不等式和学习结果用不同的方法进行推广;特别是分区大小(比决策树大小更复杂的度量)、布尔立方体(而不仅仅是均匀分布)上的p偏度量和实值(而不仅仅是布尔值)函数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning monotone decision trees in polynomial time
We give an algorithm that learns any monotone Boolean function f: {-1, 1}n rarr {-1, 1} to any constant accuracy, under the uniform distribution, in time polynomial in n and in the decision tree size of f. This is the first algorithm that can learn arbitrary monotone Boolean functions to high accuracy, using random examples only, in time polynomial in a reasonable measure of the complexity of f. A key ingredient of the result is a new bound showing that the average sensitivity of any monotone function computed by a decision tree of size s must be at most radic(log s). This bound has already proved to be of independent utility in the study of decision tree complexity (Schramm et al., 2005). We generalize the basic inequality and learning result described above in various ways; specifically, to partition size (a stronger complexity measure than decision tree size), p-biased measures over the Boolean cube (rather than just the uniform distribution), and real-valued (rather than just Boolean-valued) functions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applications of the sum-product theorem in finite fields Hardness of the covering radius problem on lattices On modular counting with polynomials A generic time hierarchy for semantic models with one bit of advice Derandomization of probabilistic auxiliary pushdown automata classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1