面向物联网安全的可编程数据平面学习方法

Qiaofeng Qin, Konstantinos Poularakis, L. Tassiulas
{"title":"面向物联网安全的可编程数据平面学习方法","authors":"Qiaofeng Qin, Konstantinos Poularakis, L. Tassiulas","doi":"10.1109/ICDCS47774.2020.00064","DOIUrl":null,"url":null,"abstract":"Security threats arising in massively connected Internet of Things (IoT) devices have attracted wide attention. It is necessary to equip IoT gateways with firewalls to prevent hacked devices from infecting a larger amount of network nodes. The match-and-action mechanism of Software Defined Networking (SDN) provides the means to differentiate malicious traffic flows from normal ones, which mirrors the past firewall mechanisms but with a new flexible and dynamically reconfigurable twist. However, vulnerabilities of IoT devices and heterogeneous protocols coexisting in the same network challenge the extension of SDN into the IoT domain. To overcome these challenges, we leverage the high level of data plane programmability brought by the P4 language and design a novel two-stage deep learning method for attack detection tailored to that particular language. Our method is able to generate flow rules that match a small number of header fields from arbitrary protocols while maintaining high performance of attack detection. Evaluations using network traces of different IoT protocols show significant benefits in accuracy, efficiency and universality over state-of-the-art methods.","PeriodicalId":158630,"journal":{"name":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Learning Approach with Programmable Data Plane towards IoT Security\",\"authors\":\"Qiaofeng Qin, Konstantinos Poularakis, L. Tassiulas\",\"doi\":\"10.1109/ICDCS47774.2020.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security threats arising in massively connected Internet of Things (IoT) devices have attracted wide attention. It is necessary to equip IoT gateways with firewalls to prevent hacked devices from infecting a larger amount of network nodes. The match-and-action mechanism of Software Defined Networking (SDN) provides the means to differentiate malicious traffic flows from normal ones, which mirrors the past firewall mechanisms but with a new flexible and dynamically reconfigurable twist. However, vulnerabilities of IoT devices and heterogeneous protocols coexisting in the same network challenge the extension of SDN into the IoT domain. To overcome these challenges, we leverage the high level of data plane programmability brought by the P4 language and design a novel two-stage deep learning method for attack detection tailored to that particular language. Our method is able to generate flow rules that match a small number of header fields from arbitrary protocols while maintaining high performance of attack detection. Evaluations using network traces of different IoT protocols show significant benefits in accuracy, efficiency and universality over state-of-the-art methods.\",\"PeriodicalId\":158630,\"journal\":{\"name\":\"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS47774.2020.00064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS47774.2020.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

大规模连接的物联网(IoT)设备所带来的安全威胁引起了广泛关注。为了防止被黑客攻击的设备感染更多的网络节点,有必要在物联网网关上安装防火墙。软件定义网络(SDN)的匹配-动作机制提供了区分恶意流量和正常流量的手段,它反映了过去的防火墙机制,但具有新的灵活和动态可重构的特点。然而,物联网设备的漏洞和异构协议在同一网络中共存,给SDN向物联网领域的扩展带来了挑战。为了克服这些挑战,我们利用P4语言带来的高水平数据平面可编程性,设计了一种针对该特定语言定制的新型两阶段深度学习方法,用于攻击检测。我们的方法能够生成匹配任意协议的少量报头字段的流规则,同时保持高性能的攻击检测。使用不同物联网协议的网络轨迹进行评估,与最先进的方法相比,在准确性、效率和通用性方面具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Learning Approach with Programmable Data Plane towards IoT Security
Security threats arising in massively connected Internet of Things (IoT) devices have attracted wide attention. It is necessary to equip IoT gateways with firewalls to prevent hacked devices from infecting a larger amount of network nodes. The match-and-action mechanism of Software Defined Networking (SDN) provides the means to differentiate malicious traffic flows from normal ones, which mirrors the past firewall mechanisms but with a new flexible and dynamically reconfigurable twist. However, vulnerabilities of IoT devices and heterogeneous protocols coexisting in the same network challenge the extension of SDN into the IoT domain. To overcome these challenges, we leverage the high level of data plane programmability brought by the P4 language and design a novel two-stage deep learning method for attack detection tailored to that particular language. Our method is able to generate flow rules that match a small number of header fields from arbitrary protocols while maintaining high performance of attack detection. Evaluations using network traces of different IoT protocols show significant benefits in accuracy, efficiency and universality over state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient Edge Offloading Scheme for UAV-Assisted Internet of Things Kill Two Birds with One Stone: Auto-tuning RocksDB for High Bandwidth and Low Latency BlueFi: Physical-layer Cross-Technology Communication from Bluetooth to WiFi [Title page i] Distributionally Robust Edge Learning with Dirichlet Process Prior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1