基于ARMA模型的局域网短期流量预测研究

Yi-yong Lin, Yang Qiao, Shibin Hu, B. Dong, Xing-yuan Zhang
{"title":"基于ARMA模型的局域网短期流量预测研究","authors":"Yi-yong Lin, Yang Qiao, Shibin Hu, B. Dong, Xing-yuan Zhang","doi":"10.1117/12.2640665","DOIUrl":null,"url":null,"abstract":"The characteristics of the ARMA model are analyzed according to the characteristics of the short-term flow data of the local area network in this paper. The time prediction model of network flow is established on the ARMA method. The prediction parameters of the ARMA model are determined and the model is simulated According to the short-term flow prediction. The comparison between the simulation results and the measured data of NetFlow shows that the model can accurately predict the short-term flow behavior trend of the local area network, which can provide reference and reference for the analysis of network traffic behavior.","PeriodicalId":336892,"journal":{"name":"Neural Networks, Information and Communication Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on short-term flow prediction of local area network based on ARMA model\",\"authors\":\"Yi-yong Lin, Yang Qiao, Shibin Hu, B. Dong, Xing-yuan Zhang\",\"doi\":\"10.1117/12.2640665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The characteristics of the ARMA model are analyzed according to the characteristics of the short-term flow data of the local area network in this paper. The time prediction model of network flow is established on the ARMA method. The prediction parameters of the ARMA model are determined and the model is simulated According to the short-term flow prediction. The comparison between the simulation results and the measured data of NetFlow shows that the model can accurately predict the short-term flow behavior trend of the local area network, which can provide reference and reference for the analysis of network traffic behavior.\",\"PeriodicalId\":336892,\"journal\":{\"name\":\"Neural Networks, Information and Communication Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks, Information and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2640665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks, Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2640665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文根据局域网短期流量数据的特点,分析了ARMA模型的特点。利用ARMA方法建立了网络流量的时间预测模型。确定了ARMA模型的预测参数,并对模型进行了数值模拟。仿真结果与NetFlow实测数据的对比表明,该模型能够准确预测局域网短期内的流量行为趋势,为网络流量行为分析提供参考和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on short-term flow prediction of local area network based on ARMA model
The characteristics of the ARMA model are analyzed according to the characteristics of the short-term flow data of the local area network in this paper. The time prediction model of network flow is established on the ARMA method. The prediction parameters of the ARMA model are determined and the model is simulated According to the short-term flow prediction. The comparison between the simulation results and the measured data of NetFlow shows that the model can accurately predict the short-term flow behavior trend of the local area network, which can provide reference and reference for the analysis of network traffic behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improve vulnerability prediction performance using self-attention mechanism and convolutional neural network Design of digital pulse-position modulation system based on minimum distance method Design of an externally adjustable oscillator circuit Research on non-intrusive video capture technology based on FPD-linkⅢ The communication process of digital binary pulse-position modulation with additive white Gaussian noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1