缺失信息的LTE测量记录的定位

Avik Ray, S. Deb, Pantelis Monogioudis
{"title":"缺失信息的LTE测量记录的定位","authors":"Avik Ray, S. Deb, Pantelis Monogioudis","doi":"10.1109/INFOCOM.2016.7524370","DOIUrl":null,"url":null,"abstract":"As cellular networks like 4G LTE networks get more and more sophisticated, mobiles also measure and send enormous amount of mobile measurement data (in TBs/week/metropolitan) during every call and session. The mobile measurement records are saved in data center for further analysis and mining, however, these measurement records are not geo-tagged because the measurement procedures are implemented in mobile LTE stack. Geo-tagging (or localizing) the stored measurement record is a fundamental building block towards network analytics and troubleshooting since the measurement records contain rich information on call quality, latency, throughput, signal quality, error codes etc. In this work, our goal is to localize these mobile measurement records. Precisely, we answer the following question: what was the location of the mobile when it sent a given measurement record? We design and implement novel machine learning based algorithms to infer whether a mobile was outdoor and if so, it infers the latitude-longitude associated with the measurement record. The key technical challenge comes from the fact that measurement records do not contain sufficient information required for triangulation or RF fingerprinting based techniques to work by themselves. Experiments performed with real data sets from an operational 4G network in a major metropolitan show that, the median accuracy of our proposed solution is around 20 m for outdoor mobiles and outdoor classification accuracy is more than 98%.","PeriodicalId":274591,"journal":{"name":"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Localization of LTE measurement records with missing information\",\"authors\":\"Avik Ray, S. Deb, Pantelis Monogioudis\",\"doi\":\"10.1109/INFOCOM.2016.7524370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As cellular networks like 4G LTE networks get more and more sophisticated, mobiles also measure and send enormous amount of mobile measurement data (in TBs/week/metropolitan) during every call and session. The mobile measurement records are saved in data center for further analysis and mining, however, these measurement records are not geo-tagged because the measurement procedures are implemented in mobile LTE stack. Geo-tagging (or localizing) the stored measurement record is a fundamental building block towards network analytics and troubleshooting since the measurement records contain rich information on call quality, latency, throughput, signal quality, error codes etc. In this work, our goal is to localize these mobile measurement records. Precisely, we answer the following question: what was the location of the mobile when it sent a given measurement record? We design and implement novel machine learning based algorithms to infer whether a mobile was outdoor and if so, it infers the latitude-longitude associated with the measurement record. The key technical challenge comes from the fact that measurement records do not contain sufficient information required for triangulation or RF fingerprinting based techniques to work by themselves. Experiments performed with real data sets from an operational 4G network in a major metropolitan show that, the median accuracy of our proposed solution is around 20 m for outdoor mobiles and outdoor classification accuracy is more than 98%.\",\"PeriodicalId\":274591,\"journal\":{\"name\":\"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2016.7524370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2016.7524370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

随着像4G LTE这样的蜂窝网络变得越来越复杂,手机在每次通话和会话中也会测量和发送大量的移动测量数据(以tb /周/城域网为单位)。移动测量记录保存在数据中心以供进一步分析和挖掘,但由于测量过程是在移动LTE堆栈中实现的,因此这些测量记录没有地理标记。地理标记(或本地化)存储的测量记录是网络分析和故障排除的基本组成部分,因为测量记录包含呼叫质量、延迟、吞吐量、信号质量、错误代码等丰富的信息。在这项工作中,我们的目标是本地化这些移动测量记录。准确地说,我们回答了以下问题:当手机发送给定的测量记录时,它的位置是什么?我们设计并实现了新的基于机器学习的算法来推断手机是否在户外,如果是,它会推断与测量记录相关的经纬度。关键的技术挑战来自于这样一个事实,即测量记录不包含三角测量或基于射频指纹的技术单独工作所需的足够信息。在大城市运营4G网络的真实数据集上进行的实验表明,我们提出的解决方案在户外移动设备上的中位数精度约为20米,户外分类精度超过98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Localization of LTE measurement records with missing information
As cellular networks like 4G LTE networks get more and more sophisticated, mobiles also measure and send enormous amount of mobile measurement data (in TBs/week/metropolitan) during every call and session. The mobile measurement records are saved in data center for further analysis and mining, however, these measurement records are not geo-tagged because the measurement procedures are implemented in mobile LTE stack. Geo-tagging (or localizing) the stored measurement record is a fundamental building block towards network analytics and troubleshooting since the measurement records contain rich information on call quality, latency, throughput, signal quality, error codes etc. In this work, our goal is to localize these mobile measurement records. Precisely, we answer the following question: what was the location of the mobile when it sent a given measurement record? We design and implement novel machine learning based algorithms to infer whether a mobile was outdoor and if so, it infers the latitude-longitude associated with the measurement record. The key technical challenge comes from the fact that measurement records do not contain sufficient information required for triangulation or RF fingerprinting based techniques to work by themselves. Experiments performed with real data sets from an operational 4G network in a major metropolitan show that, the median accuracy of our proposed solution is around 20 m for outdoor mobiles and outdoor classification accuracy is more than 98%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heavy-traffic analysis of QoE optimality for on-demand video streams over fading channels The quest for resilient (static) forwarding tables CSMA networks in a many-sources regime: A mean-field approach Variability-aware request replication for latency curtailment Apps on the move: A fine-grained analysis of usage behavior of mobile apps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1