在护士培训数字模拟游戏中考察学生的行为

Daria Novoseltseva, Catherine Pons-Lelardeux, Nadine Baptiste-Jessel
{"title":"在护士培训数字模拟游戏中考察学生的行为","authors":"Daria Novoseltseva, Catherine Pons-Lelardeux, Nadine Baptiste-Jessel","doi":"10.17083/ijsg.v9i4.543","DOIUrl":null,"url":null,"abstract":"Digital educational games have evolved in recent years due to the need to support education and training focused on non-technical skills. Data gathered through interaction with the graphical user interface are explored and exploited to analyze the players' experience. Many researchers have pointed the importance of analysis of players’ in-game behavior, which can help to enhance the learning process, identify learners' strategies, and improve the effectiveness of the serious game. This study is devoted to the analysis of students' behavior in a simulation game called CLONE, which targets work scheduling, situation awareness, and decision-making. The students’ performance and their behavioral strategies are examined based on sequences analysis of players' in-game actions. Moreover, outlier detection is proposed as an instrument for obtaining information that might help better understand students’ behavior. The findings of the study show that such indicators as time spent on planning schedule, time spent on inspecting additional information, and intensity of delegation activity are significantly higher for successful games than for lost ones. The sequences analysis and clustering reveal students' prevailing in-game strategies, which mostly consist of inspection, reading medical records, delegation, and scheduling. Eventually, outlier detection discloses the game sessions with uncertain strategies and unstructured scheduling.","PeriodicalId":196187,"journal":{"name":"Int. J. Serious Games","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Examining Students' Behavior in a Digital Simulation Game for Nurse Training\",\"authors\":\"Daria Novoseltseva, Catherine Pons-Lelardeux, Nadine Baptiste-Jessel\",\"doi\":\"10.17083/ijsg.v9i4.543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital educational games have evolved in recent years due to the need to support education and training focused on non-technical skills. Data gathered through interaction with the graphical user interface are explored and exploited to analyze the players' experience. Many researchers have pointed the importance of analysis of players’ in-game behavior, which can help to enhance the learning process, identify learners' strategies, and improve the effectiveness of the serious game. This study is devoted to the analysis of students' behavior in a simulation game called CLONE, which targets work scheduling, situation awareness, and decision-making. The students’ performance and their behavioral strategies are examined based on sequences analysis of players' in-game actions. Moreover, outlier detection is proposed as an instrument for obtaining information that might help better understand students’ behavior. The findings of the study show that such indicators as time spent on planning schedule, time spent on inspecting additional information, and intensity of delegation activity are significantly higher for successful games than for lost ones. The sequences analysis and clustering reveal students' prevailing in-game strategies, which mostly consist of inspection, reading medical records, delegation, and scheduling. Eventually, outlier detection discloses the game sessions with uncertain strategies and unstructured scheduling.\",\"PeriodicalId\":196187,\"journal\":{\"name\":\"Int. J. Serious Games\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Serious Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17083/ijsg.v9i4.543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Serious Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17083/ijsg.v9i4.543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,由于需要支持非技术技能的教育和培训,数字教育游戏得到了发展。通过与图形用户界面的交互收集的数据被用来分析玩家的体验。许多研究者都指出了分析玩家在游戏中的行为的重要性,这有助于加强学习过程,确定学习者的策略,提高严肃游戏的有效性。本研究旨在分析学生在模拟游戏“克隆”中的行为,该游戏以工作安排、情境感知和决策为目标。学生的表现和他们的行为策略是基于序列分析的玩家在游戏中的行动进行检查。此外,建议将异常值检测作为获取信息的工具,以帮助更好地理解学生的行为。研究结果表明,成功的比赛花费在计划日程、检查额外信息和授权活动强度等指标上的时间明显高于失败的比赛。序列分析和聚类揭示了学生们普遍的游戏策略,主要包括检查、阅读病历、授权和调度。最后,通过离群点检测,揭示出具有不确定策略和非结构化调度的博弈会话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Examining Students' Behavior in a Digital Simulation Game for Nurse Training
Digital educational games have evolved in recent years due to the need to support education and training focused on non-technical skills. Data gathered through interaction with the graphical user interface are explored and exploited to analyze the players' experience. Many researchers have pointed the importance of analysis of players’ in-game behavior, which can help to enhance the learning process, identify learners' strategies, and improve the effectiveness of the serious game. This study is devoted to the analysis of students' behavior in a simulation game called CLONE, which targets work scheduling, situation awareness, and decision-making. The students’ performance and their behavioral strategies are examined based on sequences analysis of players' in-game actions. Moreover, outlier detection is proposed as an instrument for obtaining information that might help better understand students’ behavior. The findings of the study show that such indicators as time spent on planning schedule, time spent on inspecting additional information, and intensity of delegation activity are significantly higher for successful games than for lost ones. The sequences analysis and clustering reveal students' prevailing in-game strategies, which mostly consist of inspection, reading medical records, delegation, and scheduling. Eventually, outlier detection discloses the game sessions with uncertain strategies and unstructured scheduling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing Deep Reinforcement Learning (DRL)-based Driving Styles for Non-Player Vehicles How ChatGPT can inspire and improve serious board game design Toward a framework for analyzing adaptive digital games' research effectiveness Editorial, Vol. 10, No. 4 Introduction to the Special Issue on GaLA Conf 2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1