{"title":"基于半监督回归的协同训练多标签学习","authors":"Meixiang Xu, Fuming Sun, Xiaojun Jiang","doi":"10.1109/SPAC.2014.6982681","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to categorize images with multiple labels based on semi-supervised learning. Conventional semi-supervised regression methods are predominantly used to solve single label problems. However, it is more common in many real-world practical applications that an instance can be associated with a set of labels simultaneously. In this paper, a novel multi-label learning method with co-training based on semi-supervised regression is proposed to process multi-label classifications. Experimental results on two real-world data sets demonstrate that the proposed method is applicable to multi-label learning problems and its effectiveness outperforms that of three exiting state-of-the-art algorithms.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"497 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi-label learning with co-training based on semi-supervised regression\",\"authors\":\"Meixiang Xu, Fuming Sun, Xiaojun Jiang\",\"doi\":\"10.1109/SPAC.2014.6982681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to categorize images with multiple labels based on semi-supervised learning. Conventional semi-supervised regression methods are predominantly used to solve single label problems. However, it is more common in many real-world practical applications that an instance can be associated with a set of labels simultaneously. In this paper, a novel multi-label learning method with co-training based on semi-supervised regression is proposed to process multi-label classifications. Experimental results on two real-world data sets demonstrate that the proposed method is applicable to multi-label learning problems and its effectiveness outperforms that of three exiting state-of-the-art algorithms.\",\"PeriodicalId\":326246,\"journal\":{\"name\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"497 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2014.6982681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-label learning with co-training based on semi-supervised regression
The goal of this paper is to categorize images with multiple labels based on semi-supervised learning. Conventional semi-supervised regression methods are predominantly used to solve single label problems. However, it is more common in many real-world practical applications that an instance can be associated with a set of labels simultaneously. In this paper, a novel multi-label learning method with co-training based on semi-supervised regression is proposed to process multi-label classifications. Experimental results on two real-world data sets demonstrate that the proposed method is applicable to multi-label learning problems and its effectiveness outperforms that of three exiting state-of-the-art algorithms.