通用安全无冲突复制数据类型

Bernardo Portela, Hugo Pacheco, Pedro Jorge, Rogério Pontes
{"title":"通用安全无冲突复制数据类型","authors":"Bernardo Portela, Hugo Pacheco, Pedro Jorge, Rogério Pontes","doi":"10.1109/CSF57540.2023.00030","DOIUrl":null,"url":null,"abstract":"Conflict-free Replicated Data Types (CRDTs) are a very popular class of distributed data structures that strike a compromise between strong and eventual consistency. Ensuring the protection of data stored within a CRDT, however, cannot be done trivially using standard encryption techniques, as secure CRDT protocols would require replica-side computation. This paper proposes an approach to lift general-purpose implementations of CRDTs to secure variants using secure multiparty computation (MPC). Each replica within the system is realized by a group of MPC parties that compute its functionality. Our results include: i) an extension of current formal models used for reasoning over the security of CRDT solutions to the MPC setting; ii) a MPC language and type system to enable the construction of secure versions of CRDTs and; iii) a proof of security that relates the security of CRDT constructions designed under said semantics to the underlying MPC library. We provide an open-source system implementation with an extensive evaluation, which compares different designs with their baseline throughput and latency.","PeriodicalId":179870,"journal":{"name":"2023 IEEE 36th Computer Security Foundations Symposium (CSF)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General-Purpose Secure Conflict-free Replicated Data Types\",\"authors\":\"Bernardo Portela, Hugo Pacheco, Pedro Jorge, Rogério Pontes\",\"doi\":\"10.1109/CSF57540.2023.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conflict-free Replicated Data Types (CRDTs) are a very popular class of distributed data structures that strike a compromise between strong and eventual consistency. Ensuring the protection of data stored within a CRDT, however, cannot be done trivially using standard encryption techniques, as secure CRDT protocols would require replica-side computation. This paper proposes an approach to lift general-purpose implementations of CRDTs to secure variants using secure multiparty computation (MPC). Each replica within the system is realized by a group of MPC parties that compute its functionality. Our results include: i) an extension of current formal models used for reasoning over the security of CRDT solutions to the MPC setting; ii) a MPC language and type system to enable the construction of secure versions of CRDTs and; iii) a proof of security that relates the security of CRDT constructions designed under said semantics to the underlying MPC library. We provide an open-source system implementation with an extensive evaluation, which compares different designs with their baseline throughput and latency.\",\"PeriodicalId\":179870,\"journal\":{\"name\":\"2023 IEEE 36th Computer Security Foundations Symposium (CSF)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 36th Computer Security Foundations Symposium (CSF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF57540.2023.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 36th Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF57540.2023.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无冲突复制数据类型(crdt)是一种非常流行的分布式数据结构,它在强一致性和最终一致性之间取得了折衷。但是,使用标准加密技术无法轻松确保存储在CRDT中的数据得到保护,因为安全的CRDT协议需要副本端计算。本文提出了一种使用安全多方计算(MPC)将crdt的通用实现提升到安全变体的方法。系统中的每个副本都是由一组MPC各方实现的,这些各方计算其功能。我们的结果包括:i)将当前用于推理CRDT解决方案安全性的正式模型扩展到MPC设置;ii) MPC语言和类型系统,以便构建安全版本的crdt;iii)将根据所述语义设计的CRDT结构的安全性与底层MPC库联系起来的安全性证明。我们提供了一个具有广泛评估的开源系统实现,它比较了不同的设计及其基线吞吐量和延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
General-Purpose Secure Conflict-free Replicated Data Types
Conflict-free Replicated Data Types (CRDTs) are a very popular class of distributed data structures that strike a compromise between strong and eventual consistency. Ensuring the protection of data stored within a CRDT, however, cannot be done trivially using standard encryption techniques, as secure CRDT protocols would require replica-side computation. This paper proposes an approach to lift general-purpose implementations of CRDTs to secure variants using secure multiparty computation (MPC). Each replica within the system is realized by a group of MPC parties that compute its functionality. Our results include: i) an extension of current formal models used for reasoning over the security of CRDT solutions to the MPC setting; ii) a MPC language and type system to enable the construction of secure versions of CRDTs and; iii) a proof of security that relates the security of CRDT constructions designed under said semantics to the underlying MPC library. We provide an open-source system implementation with an extensive evaluation, which compares different designs with their baseline throughput and latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SoK: Model Inversion Attack Landscape: Taxonomy, Challenges, and Future Roadmap $\pi_{\mathbf{RA}}$: A $\pi\text{-calculus}$ for Verifying Protocols that Use Remote Attestation Keep Spending: Beyond Optimal Cyber-Security Investment A State-Separating Proof for Yao's Garbling Scheme Collusion-Deterrent Threshold Information Escrow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1