基于稀疏网格的无源电磁器件有限元近似模型阶数降阶配置方法

P. Sumant, Hong Wu, A. Cangellaris, N. Aluru
{"title":"基于稀疏网格的无源电磁器件有限元近似模型阶数降阶配置方法","authors":"P. Sumant, Hong Wu, A. Cangellaris, N. Aluru","doi":"10.1109/MWSYM.2010.5517633","DOIUrl":null,"url":null,"abstract":"A methodology is proposed for the model order reduction of finite element approximations of passive electromagnetic devices under random input conditions. In this approach, the reduced order system matrices are represented in terms of their convergent orthogonal polynomial expansions of input random variables. The coefficients of these polynomials, which are matrices, are obtained by repeated, deterministic model order reduction of finite element models generated for specific values of the input random variables. These values are chosen efficiently in a multi-dimensional grid using a Smolyak algorithm. The stochastic reduced order model is represented in the form of an augmented system which can be used for generating the desired statistics of the specific system response. The proposed method provides for significant improvement in computational efficiency over standard Monte Carlo.","PeriodicalId":341557,"journal":{"name":"2010 IEEE MTT-S International Microwave Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A sparse grid based collocation method for model order reduction of finite element approximations of passive electromagnetic devices under uncertainty\",\"authors\":\"P. Sumant, Hong Wu, A. Cangellaris, N. Aluru\",\"doi\":\"10.1109/MWSYM.2010.5517633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A methodology is proposed for the model order reduction of finite element approximations of passive electromagnetic devices under random input conditions. In this approach, the reduced order system matrices are represented in terms of their convergent orthogonal polynomial expansions of input random variables. The coefficients of these polynomials, which are matrices, are obtained by repeated, deterministic model order reduction of finite element models generated for specific values of the input random variables. These values are chosen efficiently in a multi-dimensional grid using a Smolyak algorithm. The stochastic reduced order model is represented in the form of an augmented system which can be used for generating the desired statistics of the specific system response. The proposed method provides for significant improvement in computational efficiency over standard Monte Carlo.\",\"PeriodicalId\":341557,\"journal\":{\"name\":\"2010 IEEE MTT-S International Microwave Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE MTT-S International Microwave Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2010.5517633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2010.5517633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

提出了一种随机输入条件下无源电磁器件有限元近似模型阶数降阶的方法。在这种方法中,降阶系统矩阵用输入随机变量的收敛正交多项式展开式表示。这些多项式的系数是矩阵,通过对输入随机变量的特定值生成的有限元模型进行重复的确定性模型降阶得到。使用Smolyak算法在多维网格中有效地选择这些值。随机降阶模型以增广系统的形式表示,该增广系统可用于生成特定系统响应的所需统计量。与标准蒙特卡罗方法相比,该方法的计算效率有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A sparse grid based collocation method for model order reduction of finite element approximations of passive electromagnetic devices under uncertainty
A methodology is proposed for the model order reduction of finite element approximations of passive electromagnetic devices under random input conditions. In this approach, the reduced order system matrices are represented in terms of their convergent orthogonal polynomial expansions of input random variables. The coefficients of these polynomials, which are matrices, are obtained by repeated, deterministic model order reduction of finite element models generated for specific values of the input random variables. These values are chosen efficiently in a multi-dimensional grid using a Smolyak algorithm. The stochastic reduced order model is represented in the form of an augmented system which can be used for generating the desired statistics of the specific system response. The proposed method provides for significant improvement in computational efficiency over standard Monte Carlo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new approach to design low cost, low complexity phased arrays Use of ground planes within the spatial images technique: Application to the analysis of rectangular multilayered shielded enclosures Negative and zero group velocity in microstrip/negative-refractive-index transmission-line couplers A dual-mode mm-wave injection-locked frequency divider with greater than 18% locking range in 65nm CMOS Asymmetric multilevel outphasing transmitter using class-E PAs with discrete pulse width modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1