{"title":"耦合簇下折叠理论:化学和材料科学中复合量子系统降维的通用多体算法","authors":"Nicholas P. Bauman, Karol Kowalski","doi":"10.1186/s41313-022-00046-8","DOIUrl":null,"url":null,"abstract":"<div><p>The recently introduced coupled cluster (CC) downfolding techniques for reducing the dimensionality of quantum many-body problems recast the CC formalism in the form of the renormalization procedure allowing, for the construction of effective (or downfolded) Hamiltonians in small-dimensionality sub-space, usually identified with the so-called active space, of the entire Hilbert space. The resulting downfolded Hamiltonians integrate out the external (out-of-active-space) Fermionic degrees of freedom from the internal (in-the-active-space) parameters of the wave function, which can be determined as components of the eigenvectors of the downfolded Hamiltonians in the active space. This paper will discuss the extension of non-Hermitian (associated with standard CC formulations) and Hermitian (associated with the unitary CC approaches) downfolding formulations to composite quantum systems commonly encountered in materials science and chemistry. The non-Hermitian formulation can provide a platform for developing local CC approaches, while the Hermitian one can serve as an ideal foundation for developing various quantum computing applications based on the limited quantum resources. We also discuss the algorithm for extracting the semi-analytical form of the inter-electron interactions in the active spaces.</p></div>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://materialstheory.springeropen.com/counter/pdf/10.1186/s41313-022-00046-8","citationCount":"12","resultStr":"{\"title\":\"Coupled Cluster Downfolding Theory: towards universal many-body algorithms for dimensionality reduction of composite quantum systems in chemistry and materials science\",\"authors\":\"Nicholas P. Bauman, Karol Kowalski\",\"doi\":\"10.1186/s41313-022-00046-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recently introduced coupled cluster (CC) downfolding techniques for reducing the dimensionality of quantum many-body problems recast the CC formalism in the form of the renormalization procedure allowing, for the construction of effective (or downfolded) Hamiltonians in small-dimensionality sub-space, usually identified with the so-called active space, of the entire Hilbert space. The resulting downfolded Hamiltonians integrate out the external (out-of-active-space) Fermionic degrees of freedom from the internal (in-the-active-space) parameters of the wave function, which can be determined as components of the eigenvectors of the downfolded Hamiltonians in the active space. This paper will discuss the extension of non-Hermitian (associated with standard CC formulations) and Hermitian (associated with the unitary CC approaches) downfolding formulations to composite quantum systems commonly encountered in materials science and chemistry. The non-Hermitian formulation can provide a platform for developing local CC approaches, while the Hermitian one can serve as an ideal foundation for developing various quantum computing applications based on the limited quantum resources. We also discuss the algorithm for extracting the semi-analytical form of the inter-electron interactions in the active spaces.</p></div>\",\"PeriodicalId\":693,\"journal\":{\"name\":\"Materials Theory\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://materialstheory.springeropen.com/counter/pdf/10.1186/s41313-022-00046-8\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Theory\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41313-022-00046-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-022-00046-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coupled Cluster Downfolding Theory: towards universal many-body algorithms for dimensionality reduction of composite quantum systems in chemistry and materials science
The recently introduced coupled cluster (CC) downfolding techniques for reducing the dimensionality of quantum many-body problems recast the CC formalism in the form of the renormalization procedure allowing, for the construction of effective (or downfolded) Hamiltonians in small-dimensionality sub-space, usually identified with the so-called active space, of the entire Hilbert space. The resulting downfolded Hamiltonians integrate out the external (out-of-active-space) Fermionic degrees of freedom from the internal (in-the-active-space) parameters of the wave function, which can be determined as components of the eigenvectors of the downfolded Hamiltonians in the active space. This paper will discuss the extension of non-Hermitian (associated with standard CC formulations) and Hermitian (associated with the unitary CC approaches) downfolding formulations to composite quantum systems commonly encountered in materials science and chemistry. The non-Hermitian formulation can provide a platform for developing local CC approaches, while the Hermitian one can serve as an ideal foundation for developing various quantum computing applications based on the limited quantum resources. We also discuss the algorithm for extracting the semi-analytical form of the inter-electron interactions in the active spaces.
期刊介绍:
Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory.
The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.