基于最小二乘梯度法的a类噪声参数辨识

Shu-xia Zhang, Yu-zhong Jiang
{"title":"基于最小二乘梯度法的a类噪声参数辨识","authors":"Shu-xia Zhang, Yu-zhong Jiang","doi":"10.1109/CISP.2009.5300913","DOIUrl":null,"url":null,"abstract":"The Middleton Class A interference model is a statistical-physical and parametric model for man-made and natural electromagnetic (EM) interference. In this paper, the efficient estimation of the Class A model parameters based on least square gradient method is derived. The considered estimator converges fast and low-complexity with performance approaching theoretical optima for large data samples. Simulation of this estimator with three unknown parameters indicates that this technique is efficient. Index Terms—Middleton Class A Model. Impulsive Noise. Parameter Estimation. Non-Gaussian Noise. characteristic function has simple form(12). In this paper we proposed a method for parameter estimation based on the characteristic function spectrum estimation from observation samples. Our method is well suited not only for two-parameter estimation of Class A model like Zabin's work(10), but also for estimation of full three-parameter estimation and adaptive to track changes for channel noise. The later is critical to the implementation of signal detection and estimation algorithms in non-Gaussian noise environment.","PeriodicalId":263281,"journal":{"name":"2009 2nd International Congress on Image and Signal Processing","volume":"34 51","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of Class a Noise Parameters via Least Square Gradient Method\",\"authors\":\"Shu-xia Zhang, Yu-zhong Jiang\",\"doi\":\"10.1109/CISP.2009.5300913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Middleton Class A interference model is a statistical-physical and parametric model for man-made and natural electromagnetic (EM) interference. In this paper, the efficient estimation of the Class A model parameters based on least square gradient method is derived. The considered estimator converges fast and low-complexity with performance approaching theoretical optima for large data samples. Simulation of this estimator with three unknown parameters indicates that this technique is efficient. Index Terms—Middleton Class A Model. Impulsive Noise. Parameter Estimation. Non-Gaussian Noise. characteristic function has simple form(12). In this paper we proposed a method for parameter estimation based on the characteristic function spectrum estimation from observation samples. Our method is well suited not only for two-parameter estimation of Class A model like Zabin's work(10), but also for estimation of full three-parameter estimation and adaptive to track changes for channel noise. The later is critical to the implementation of signal detection and estimation algorithms in non-Gaussian noise environment.\",\"PeriodicalId\":263281,\"journal\":{\"name\":\"2009 2nd International Congress on Image and Signal Processing\",\"volume\":\"34 51\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd International Congress on Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP.2009.5300913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Congress on Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2009.5300913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

米德尔顿A类干扰模型是人为和自然电磁干扰的统计物理和参数模型。本文提出了基于最小二乘梯度法的A类模型参数的有效估计方法。所考虑的估计器收敛速度快,复杂度低,对于大数据样本的性能接近理论最优。对该估计器进行了三个未知参数的仿真,结果表明该方法是有效的。索引条款-米德尔顿A类模型。脉冲噪声。参数估计。非高斯噪声。特征函数形式简单(12)。本文提出了一种基于观测样本特征函数谱估计的参数估计方法。我们的方法不仅适用于Zabin(10)等A类模型的双参数估计,而且适用于全三参数估计的估计,并自适应信道噪声的跟踪变化。后者对于实现非高斯噪声环境下的信号检测和估计算法至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Class a Noise Parameters via Least Square Gradient Method
The Middleton Class A interference model is a statistical-physical and parametric model for man-made and natural electromagnetic (EM) interference. In this paper, the efficient estimation of the Class A model parameters based on least square gradient method is derived. The considered estimator converges fast and low-complexity with performance approaching theoretical optima for large data samples. Simulation of this estimator with three unknown parameters indicates that this technique is efficient. Index Terms—Middleton Class A Model. Impulsive Noise. Parameter Estimation. Non-Gaussian Noise. characteristic function has simple form(12). In this paper we proposed a method for parameter estimation based on the characteristic function spectrum estimation from observation samples. Our method is well suited not only for two-parameter estimation of Class A model like Zabin's work(10), but also for estimation of full three-parameter estimation and adaptive to track changes for channel noise. The later is critical to the implementation of signal detection and estimation algorithms in non-Gaussian noise environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Algorithm about Subpixel Edge Detection Based on Zernike Moments and Three-Grayscale Pattern Audio Watermarking Algorithm Robust to TSM Based on Counter Propagation Neural Network Concentric Two-Portion Radial Polarized Beam with Phase Shift Application of Fractal Technique in Nonlinear Geophysical Signal Processing A New Method for Estimating the Number of Targets from Radar Returns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1