操作中的群体智慧:利用预测市场进行预测

Achal Bassamboo, Ruomeng Cui, Antonio Moreno
{"title":"操作中的群体智慧:利用预测市场进行预测","authors":"Achal Bassamboo, Ruomeng Cui, Antonio Moreno","doi":"10.2139/ssrn.2679663","DOIUrl":null,"url":null,"abstract":"Prediction is an important activity in various business processes, but it becomes difficult when historical information is not available, such as forecasting demand of a new product. One approach that can be applied in such situations is to crowdsource opinions from employees and the public. Our paper studies the application of crowd forecasting in operations management. In particular, we study how efficient crowds are in estimating parameters important for operational decisions that companies make, including sales forecasts, price commodity forecasts, and predictions of popular product features. We focus on a widely adopted class of crowd-based forecasting tools, referred to as prediction markets. These are virtual markets created to aggregate crowds' opinions and operate in a way similar to stock markets. We partnered with Cultivate Labs, a leading company that provides a prediction market engine, to test the forecast accuracy of prediction markets using the firm's data from its public markets and several corporate prediction markets, including a chemical company, a retail company and an automotive company. Using information extracted from employees and public crowds, we show that prediction markets produce well-calibrated forecasting results. In addition, we run a field experiment to study the conditions under which groups work well. Specifically, we explore how group size plays a role in the accuracy of the forecast and find that large groups (e.g., 18 participants) perform substantially better than smaller groups (e.g., 8 participants), highlighting the importance of group size and quantifying the right sizes needed to produce a good forecast using such mechanisms.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"47 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Wisdom of Crowds in Operations: Forecasting Using Prediction Markets\",\"authors\":\"Achal Bassamboo, Ruomeng Cui, Antonio Moreno\",\"doi\":\"10.2139/ssrn.2679663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction is an important activity in various business processes, but it becomes difficult when historical information is not available, such as forecasting demand of a new product. One approach that can be applied in such situations is to crowdsource opinions from employees and the public. Our paper studies the application of crowd forecasting in operations management. In particular, we study how efficient crowds are in estimating parameters important for operational decisions that companies make, including sales forecasts, price commodity forecasts, and predictions of popular product features. We focus on a widely adopted class of crowd-based forecasting tools, referred to as prediction markets. These are virtual markets created to aggregate crowds' opinions and operate in a way similar to stock markets. We partnered with Cultivate Labs, a leading company that provides a prediction market engine, to test the forecast accuracy of prediction markets using the firm's data from its public markets and several corporate prediction markets, including a chemical company, a retail company and an automotive company. Using information extracted from employees and public crowds, we show that prediction markets produce well-calibrated forecasting results. In addition, we run a field experiment to study the conditions under which groups work well. Specifically, we explore how group size plays a role in the accuracy of the forecast and find that large groups (e.g., 18 participants) perform substantially better than smaller groups (e.g., 8 participants), highlighting the importance of group size and quantifying the right sizes needed to produce a good forecast using such mechanisms.\",\"PeriodicalId\":308524,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"volume\":\"47 19\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2679663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2679663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

预测是各种业务流程中的一项重要活动,但是当历史信息不可用时,例如预测新产品的需求,预测就变得很困难。在这种情况下,可以采用的一种方法是众包员工和公众的意见。本文研究了人群预测在运营管理中的应用。特别是,我们研究了群体在估计公司运营决策的重要参数时的效率,包括销售预测、价格商品预测和流行产品特征的预测。我们关注的是一类被广泛采用的基于人群的预测工具,即预测市场。这些虚拟市场的创建是为了汇集人群的意见,并以类似于股票市场的方式运作。我们与提供预测市场引擎的领先公司——栽培实验室合作,使用该公司来自其公开市场和几家企业预测市场的数据,包括一家化学公司、一家零售公司和一家汽车公司,来测试预测市场的预测准确性。利用从员工和公众人群中提取的信息,我们表明预测市场产生了校准良好的预测结果。此外,我们还进行了实地试验,以研究小组工作良好的条件。具体来说,我们探讨了群体规模如何在预测的准确性中发挥作用,并发现大群体(例如,18名参与者)的表现明显好于小群体(例如,8名参与者),强调了群体规模的重要性,并量化了使用这种机制产生良好预测所需的正确规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wisdom of Crowds in Operations: Forecasting Using Prediction Markets
Prediction is an important activity in various business processes, but it becomes difficult when historical information is not available, such as forecasting demand of a new product. One approach that can be applied in such situations is to crowdsource opinions from employees and the public. Our paper studies the application of crowd forecasting in operations management. In particular, we study how efficient crowds are in estimating parameters important for operational decisions that companies make, including sales forecasts, price commodity forecasts, and predictions of popular product features. We focus on a widely adopted class of crowd-based forecasting tools, referred to as prediction markets. These are virtual markets created to aggregate crowds' opinions and operate in a way similar to stock markets. We partnered with Cultivate Labs, a leading company that provides a prediction market engine, to test the forecast accuracy of prediction markets using the firm's data from its public markets and several corporate prediction markets, including a chemical company, a retail company and an automotive company. Using information extracted from employees and public crowds, we show that prediction markets produce well-calibrated forecasting results. In addition, we run a field experiment to study the conditions under which groups work well. Specifically, we explore how group size plays a role in the accuracy of the forecast and find that large groups (e.g., 18 participants) perform substantially better than smaller groups (e.g., 8 participants), highlighting the importance of group size and quantifying the right sizes needed to produce a good forecast using such mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1