基于自动关键点检测和区域感知特征的人体点集配准

A. Maharjan, Xiaohui Yuan
{"title":"基于自动关键点检测和区域感知特征的人体点集配准","authors":"A. Maharjan, Xiaohui Yuan","doi":"10.1109/WACV51458.2022.00232","DOIUrl":null,"url":null,"abstract":"Non-rigid point set registration is challenging when point sets have large deformations and different numbers of points. Examples of such point sets include human point sets representing complex human poses captured by different types of depth cameras. In this work, we present a probabilistic, non-rigid registration method to deal with these issues. Two regularization terms are used: key point correspondences and local neighborhood preservation. Our method detects key points in the point sets based on geodesic distance. Correspondences are established using a new cluster-based, region-aware feature descriptor. This feature descriptor encodes the association of a cluster to the left-right (symmetry) or upper-lower regions of the point sets. We use the Stochastic Neighbor Embedding (SNE) constraint to preserve the local neighborhood of the point set. Experimental results on challenging 3D human poses demonstrate that our method outperforms the state-of-the-art methods. Our method achieved highly competitive performance with a slight increase of error by 3.9% in comparison with the method using manually specified key point correspondences.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"11 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Registration of Human Point Set using Automatic Key Point Detection and Region-aware Features\",\"authors\":\"A. Maharjan, Xiaohui Yuan\",\"doi\":\"10.1109/WACV51458.2022.00232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-rigid point set registration is challenging when point sets have large deformations and different numbers of points. Examples of such point sets include human point sets representing complex human poses captured by different types of depth cameras. In this work, we present a probabilistic, non-rigid registration method to deal with these issues. Two regularization terms are used: key point correspondences and local neighborhood preservation. Our method detects key points in the point sets based on geodesic distance. Correspondences are established using a new cluster-based, region-aware feature descriptor. This feature descriptor encodes the association of a cluster to the left-right (symmetry) or upper-lower regions of the point sets. We use the Stochastic Neighbor Embedding (SNE) constraint to preserve the local neighborhood of the point set. Experimental results on challenging 3D human poses demonstrate that our method outperforms the state-of-the-art methods. Our method achieved highly competitive performance with a slight increase of error by 3.9% in comparison with the method using manually specified key point correspondences.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"11 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当点集变形大且点数不同时,非刚性点集配准具有挑战性。此类点集的示例包括表示由不同类型的深度相机捕获的复杂人体姿势的人体点集。在这项工作中,我们提出了一种概率非刚性配准方法来处理这些问题。使用了两个正则化术语:关键点对应和局部邻域保存。我们的方法是基于测地线距离来检测点集中的关键点。使用新的基于聚类的区域感知特征描述符建立对应关系。这个特征描述符编码集群与点集的左右(对称)或上下区域的关联。我们使用随机邻居嵌入(SNE)约束来保持点集的局部邻域。在具有挑战性的3D人体姿势的实验结果表明,我们的方法优于最先进的方法。我们的方法获得了极具竞争力的性能,与使用手动指定关键点对应的方法相比,误差略微增加了3.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Registration of Human Point Set using Automatic Key Point Detection and Region-aware Features
Non-rigid point set registration is challenging when point sets have large deformations and different numbers of points. Examples of such point sets include human point sets representing complex human poses captured by different types of depth cameras. In this work, we present a probabilistic, non-rigid registration method to deal with these issues. Two regularization terms are used: key point correspondences and local neighborhood preservation. Our method detects key points in the point sets based on geodesic distance. Correspondences are established using a new cluster-based, region-aware feature descriptor. This feature descriptor encodes the association of a cluster to the left-right (symmetry) or upper-lower regions of the point sets. We use the Stochastic Neighbor Embedding (SNE) constraint to preserve the local neighborhood of the point set. Experimental results on challenging 3D human poses demonstrate that our method outperforms the state-of-the-art methods. Our method achieved highly competitive performance with a slight increase of error by 3.9% in comparison with the method using manually specified key point correspondences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Learning for Human Sensing Using Radio Signals AirCamRTM: Enhancing Vehicle Detection for Efficient Aerial Camera-based Road Traffic Monitoring QUALIFIER: Question-Guided Self-Attentive Multimodal Fusion Network for Audio Visual Scene-Aware Dialog Transductive Weakly-Supervised Player Detection using Soccer Broadcast Videos Inpaint2Learn: A Self-Supervised Framework for Affordance Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1