Mohammed Elhassan, Ledong Zhu, Z. Tan, Wael Alhaddad
{"title":"基于人工神经网络的中开槽箱式桥面优化气动系数预测","authors":"Mohammed Elhassan, Ledong Zhu, Z. Tan, Wael Alhaddad","doi":"10.2749/nanjing.2022.0444","DOIUrl":null,"url":null,"abstract":"Aerodynamic shape optimization of bridge deck is a very important task in the wind-resistant design of long-span bridges and often carried out via wind tunnel tests of sectional model or CFD simulation, both of which commonly need heavy workload, thus are time-consuming and costly. In this paper, an artificial neural network (ANN) model was developed to predict aerodynamic coefficients of a central-slotted box deck of a 1600m main span cable-stayed bridge during the aerodynamic shape optimization to enhance its performance of wind-induced static stability. The ANN model was built and trained with a data set of aerodynamic coefficients obtained from limited cases of wind tunnel tests. The effect of neuron numbers in the hidden layer on prediction accuracy was discussed. The results show that the built ANN model can accurately predict the aerodynamic coefficients and significantly reduce the workload of wind tunnel tests.","PeriodicalId":410450,"journal":{"name":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","volume":"122 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Aerodynamic Coefficients using Artificial Neural Network in Shape Optimization of Centrally-Slotted Box Deck Bridge\",\"authors\":\"Mohammed Elhassan, Ledong Zhu, Z. Tan, Wael Alhaddad\",\"doi\":\"10.2749/nanjing.2022.0444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerodynamic shape optimization of bridge deck is a very important task in the wind-resistant design of long-span bridges and often carried out via wind tunnel tests of sectional model or CFD simulation, both of which commonly need heavy workload, thus are time-consuming and costly. In this paper, an artificial neural network (ANN) model was developed to predict aerodynamic coefficients of a central-slotted box deck of a 1600m main span cable-stayed bridge during the aerodynamic shape optimization to enhance its performance of wind-induced static stability. The ANN model was built and trained with a data set of aerodynamic coefficients obtained from limited cases of wind tunnel tests. The effect of neuron numbers in the hidden layer on prediction accuracy was discussed. The results show that the built ANN model can accurately predict the aerodynamic coefficients and significantly reduce the workload of wind tunnel tests.\",\"PeriodicalId\":410450,\"journal\":{\"name\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"volume\":\"122 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/nanjing.2022.0444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/nanjing.2022.0444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Aerodynamic Coefficients using Artificial Neural Network in Shape Optimization of Centrally-Slotted Box Deck Bridge
Aerodynamic shape optimization of bridge deck is a very important task in the wind-resistant design of long-span bridges and often carried out via wind tunnel tests of sectional model or CFD simulation, both of which commonly need heavy workload, thus are time-consuming and costly. In this paper, an artificial neural network (ANN) model was developed to predict aerodynamic coefficients of a central-slotted box deck of a 1600m main span cable-stayed bridge during the aerodynamic shape optimization to enhance its performance of wind-induced static stability. The ANN model was built and trained with a data set of aerodynamic coefficients obtained from limited cases of wind tunnel tests. The effect of neuron numbers in the hidden layer on prediction accuracy was discussed. The results show that the built ANN model can accurately predict the aerodynamic coefficients and significantly reduce the workload of wind tunnel tests.