{"title":"第二代对流热流通量校准装置的设计与不确定性分析","authors":"D. Holmberg, C. Womeldorf, W. Grosshandler","doi":"10.1115/imece1999-1104","DOIUrl":null,"url":null,"abstract":"\n The National Institute of Standards and Technology has developed a convective heat flux facility to allow calibration of heat flux sensors. The facility consists of a small wind tunnel that produces a two-dimensional laminar boundary layer across a heated isothermal copper plate. Sensors are mounted flush in the copper plate alongside a reference to measure the heat leaving the plate. Convective calibrations up to 5 kW/m2 are possible. Sensor output is compared with the reference value, and contrasted with a standard radiation calibration. Recognizing that many sensors are used in mixed radiation and convection environments, this facility provides a unique opportunity to assess a sensor’s convective response. This report describes a second-generation heated plate and provides an analysis of the system uncertainty. Redundant references, improved sensor heating and mounting, improved reference isolation, and a minimized radiation component has reduced the combined relative expanded uncertainty of the reference to ±2.5 %. The benefits of an embedded temperature sensor in the heat flux sensor are described. The facility is available for comparative calibrations and for heat transfer studies by individual researchers.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"5 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Design and Uncertainty Analysis of a Second-Generation Convective Heat Flux Calibration Facility\",\"authors\":\"D. Holmberg, C. Womeldorf, W. Grosshandler\",\"doi\":\"10.1115/imece1999-1104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The National Institute of Standards and Technology has developed a convective heat flux facility to allow calibration of heat flux sensors. The facility consists of a small wind tunnel that produces a two-dimensional laminar boundary layer across a heated isothermal copper plate. Sensors are mounted flush in the copper plate alongside a reference to measure the heat leaving the plate. Convective calibrations up to 5 kW/m2 are possible. Sensor output is compared with the reference value, and contrasted with a standard radiation calibration. Recognizing that many sensors are used in mixed radiation and convection environments, this facility provides a unique opportunity to assess a sensor’s convective response. This report describes a second-generation heated plate and provides an analysis of the system uncertainty. Redundant references, improved sensor heating and mounting, improved reference isolation, and a minimized radiation component has reduced the combined relative expanded uncertainty of the reference to ±2.5 %. The benefits of an embedded temperature sensor in the heat flux sensor are described. The facility is available for comparative calibrations and for heat transfer studies by individual researchers.\",\"PeriodicalId\":120929,\"journal\":{\"name\":\"Heat Transfer: Volume 4\",\"volume\":\"5 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 4\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1999-1104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-1104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Uncertainty Analysis of a Second-Generation Convective Heat Flux Calibration Facility
The National Institute of Standards and Technology has developed a convective heat flux facility to allow calibration of heat flux sensors. The facility consists of a small wind tunnel that produces a two-dimensional laminar boundary layer across a heated isothermal copper plate. Sensors are mounted flush in the copper plate alongside a reference to measure the heat leaving the plate. Convective calibrations up to 5 kW/m2 are possible. Sensor output is compared with the reference value, and contrasted with a standard radiation calibration. Recognizing that many sensors are used in mixed radiation and convection environments, this facility provides a unique opportunity to assess a sensor’s convective response. This report describes a second-generation heated plate and provides an analysis of the system uncertainty. Redundant references, improved sensor heating and mounting, improved reference isolation, and a minimized radiation component has reduced the combined relative expanded uncertainty of the reference to ±2.5 %. The benefits of an embedded temperature sensor in the heat flux sensor are described. The facility is available for comparative calibrations and for heat transfer studies by individual researchers.