基于二维稀疏表示的单幅图像超分辨率

Na Qi, Yunhui Shi, Xiaoyan Sun, Wenpeng Ding, Baocai Yin
{"title":"基于二维稀疏表示的单幅图像超分辨率","authors":"Na Qi, Yunhui Shi, Xiaoyan Sun, Wenpeng Ding, Baocai Yin","doi":"10.1109/ICME.2015.7177485","DOIUrl":null,"url":null,"abstract":"Image super-resolution with sparsity prior provides promising performance. However, traditional sparse-based super resolution methods transform a two dimensional (2D) image into a one dimensional (1D) vector, which ignores the intrinsic 2D structure as well as spatial correlation inherent in images. In this paper, we propose the first image super-resolution method which reconstructs a high resolution image from its low resolution counterpart via a two dimensional sparse model. Correspondingly, we present a new dictionary learning algorithm to fully make use of the corresponding relationship of two pairs of 2D dictionaries of low and high resolution images, respectively. Experimental results demonstrate that our proposed image super-resolution with 2D sparse model outperforms state-of-the-art 1D sparse model based super resolution methods in terms of both reconstruction ability and memory usage.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"1983 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Single image super-resolution via 2D sparse representation\",\"authors\":\"Na Qi, Yunhui Shi, Xiaoyan Sun, Wenpeng Ding, Baocai Yin\",\"doi\":\"10.1109/ICME.2015.7177485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image super-resolution with sparsity prior provides promising performance. However, traditional sparse-based super resolution methods transform a two dimensional (2D) image into a one dimensional (1D) vector, which ignores the intrinsic 2D structure as well as spatial correlation inherent in images. In this paper, we propose the first image super-resolution method which reconstructs a high resolution image from its low resolution counterpart via a two dimensional sparse model. Correspondingly, we present a new dictionary learning algorithm to fully make use of the corresponding relationship of two pairs of 2D dictionaries of low and high resolution images, respectively. Experimental results demonstrate that our proposed image super-resolution with 2D sparse model outperforms state-of-the-art 1D sparse model based super resolution methods in terms of both reconstruction ability and memory usage.\",\"PeriodicalId\":146271,\"journal\":{\"name\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"1983 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2015.7177485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

具有稀疏先验的图像超分辨率提供了良好的性能。然而,传统的基于稀疏的超分辨率方法将二维(2D)图像转换为一维(1D)向量,忽略了图像固有的二维结构和空间相关性。本文提出了第一种图像超分辨率方法,通过二维稀疏模型从低分辨率图像重建高分辨率图像。相应地,我们提出了一种新的字典学习算法,充分利用了低分辨率和高分辨率图像的两对二维字典的对应关系。实验结果表明,我们提出的基于二维稀疏模型的图像超分辨率在重建能力和内存利用率方面都优于当前基于一维稀疏模型的图像超分辨率方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single image super-resolution via 2D sparse representation
Image super-resolution with sparsity prior provides promising performance. However, traditional sparse-based super resolution methods transform a two dimensional (2D) image into a one dimensional (1D) vector, which ignores the intrinsic 2D structure as well as spatial correlation inherent in images. In this paper, we propose the first image super-resolution method which reconstructs a high resolution image from its low resolution counterpart via a two dimensional sparse model. Correspondingly, we present a new dictionary learning algorithm to fully make use of the corresponding relationship of two pairs of 2D dictionaries of low and high resolution images, respectively. Experimental results demonstrate that our proposed image super-resolution with 2D sparse model outperforms state-of-the-art 1D sparse model based super resolution methods in terms of both reconstruction ability and memory usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affect-expressive hand gestures synthesis and animation VTouch: Vision-enhanced interaction for large touch displays Egocentric hand pose estimation and distance recovery in a single RGB image A hybrid approach for retrieving diverse social images of landmarks Spatial perception reproduction of sound events based on sound property coincidences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1