Kirit Chatterjee, H. Lam, R. Robucci, G. Rao, Y. Kostov
{"title":"用于新生儿护理的低成本荧光温度传感系统","authors":"Kirit Chatterjee, H. Lam, R. Robucci, G. Rao, Y. Kostov","doi":"10.1109/ICSENS.2013.6688180","DOIUrl":null,"url":null,"abstract":"A remotely-measured fluorescence-based temperature measurement system designed for neonatal care is built and presented using a low-cost, off-the-shelf camera-phone image sensor. The fluorophore-based sensor salve removes the need of attaching thermistor probes using adhesives to the neonate's skin; and therefore reduces the risk of epidermal stripping, microbial infections, etc. The system performs low-cost yet precise remote ratiometric measurements of our thermometric fluorescent salve using only a 10-bit, 120-FPS CMOS imager. An FPGA handles control and capture of image data in the region of interest with frames synchronized with a pulsing illuminator. A minimalistic algorithm using basic pixel-summations and division to compute a ratio is presented, suitable for implementation on a minimal embedded system. The resolution of the system is reported to be at least 0.18 degrees Celcius.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-cost fluorescence-based temperature sensing system for neonatal care\",\"authors\":\"Kirit Chatterjee, H. Lam, R. Robucci, G. Rao, Y. Kostov\",\"doi\":\"10.1109/ICSENS.2013.6688180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A remotely-measured fluorescence-based temperature measurement system designed for neonatal care is built and presented using a low-cost, off-the-shelf camera-phone image sensor. The fluorophore-based sensor salve removes the need of attaching thermistor probes using adhesives to the neonate's skin; and therefore reduces the risk of epidermal stripping, microbial infections, etc. The system performs low-cost yet precise remote ratiometric measurements of our thermometric fluorescent salve using only a 10-bit, 120-FPS CMOS imager. An FPGA handles control and capture of image data in the region of interest with frames synchronized with a pulsing illuminator. A minimalistic algorithm using basic pixel-summations and division to compute a ratio is presented, suitable for implementation on a minimal embedded system. The resolution of the system is reported to be at least 0.18 degrees Celcius.\",\"PeriodicalId\":258260,\"journal\":{\"name\":\"2013 IEEE SENSORS\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2013.6688180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2013.6688180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-cost fluorescence-based temperature sensing system for neonatal care
A remotely-measured fluorescence-based temperature measurement system designed for neonatal care is built and presented using a low-cost, off-the-shelf camera-phone image sensor. The fluorophore-based sensor salve removes the need of attaching thermistor probes using adhesives to the neonate's skin; and therefore reduces the risk of epidermal stripping, microbial infections, etc. The system performs low-cost yet precise remote ratiometric measurements of our thermometric fluorescent salve using only a 10-bit, 120-FPS CMOS imager. An FPGA handles control and capture of image data in the region of interest with frames synchronized with a pulsing illuminator. A minimalistic algorithm using basic pixel-summations and division to compute a ratio is presented, suitable for implementation on a minimal embedded system. The resolution of the system is reported to be at least 0.18 degrees Celcius.