蚁群优化的自适应参数控制策略

Weixin Ling, Huanping Luo
{"title":"蚁群优化的自适应参数控制策略","authors":"Weixin Ling, Huanping Luo","doi":"10.1109/CIS.2007.156","DOIUrl":null,"url":null,"abstract":"proved to be one of the best performing algorithms for NP-hard combinational optimization problems like TSP. Many researchers have been attracted in research for ACO but fewer tuning methodologies have been done on its parameters which influence the algorithm directly. The setting of ACO's parameters is studied in this paper. The Artificial Fish Swarm Algorithm (AFSA) is introduced to solve the parameter tuning problem, and an adaptive parameter setting strategy is proposed. It's proved to be effective by the experiment based on TSPLIB test. Keywords: Artificial Fish Swarm Algorithm, Ant Colony Optimization, parameters, TSP","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"An Adaptive Parameter Control Strategy for Ant Colony Optimization\",\"authors\":\"Weixin Ling, Huanping Luo\",\"doi\":\"10.1109/CIS.2007.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"proved to be one of the best performing algorithms for NP-hard combinational optimization problems like TSP. Many researchers have been attracted in research for ACO but fewer tuning methodologies have been done on its parameters which influence the algorithm directly. The setting of ACO's parameters is studied in this paper. The Artificial Fish Swarm Algorithm (AFSA) is introduced to solve the parameter tuning problem, and an adaptive parameter setting strategy is proposed. It's proved to be effective by the experiment based on TSPLIB test. Keywords: Artificial Fish Swarm Algorithm, Ant Colony Optimization, parameters, TSP\",\"PeriodicalId\":127238,\"journal\":{\"name\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2007.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

被证明是求解像TSP这样的NP-hard组合优化问题的最佳算法之一。蚁群算法的研究吸引了众多研究者,但对其直接影响算法的参数进行调优的方法较少。本文研究了蚁群算法的参数设置问题。引入人工鱼群算法(Artificial Fish Swarm Algorithm, AFSA)来解决参数整定问题,提出了一种自适应参数整定策略。基于TSPLIB测试的实验证明了该方法的有效性。关键词:人工鱼群算法,蚁群优化,参数,TSP
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Adaptive Parameter Control Strategy for Ant Colony Optimization
proved to be one of the best performing algorithms for NP-hard combinational optimization problems like TSP. Many researchers have been attracted in research for ACO but fewer tuning methodologies have been done on its parameters which influence the algorithm directly. The setting of ACO's parameters is studied in this paper. The Artificial Fish Swarm Algorithm (AFSA) is introduced to solve the parameter tuning problem, and an adaptive parameter setting strategy is proposed. It's proved to be effective by the experiment based on TSPLIB test. Keywords: Artificial Fish Swarm Algorithm, Ant Colony Optimization, parameters, TSP
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and Performance Evaluation of an Adaptable Failure Detector for Distributed System Generalized Synchronization Theorem for Non-Autonomous Differential Equation with Application in Encryption Scheme Adaptive Trust Management in MANET The Study of Compost Quality Evaluation Modeling Method Based on Wavelet Neural Network for Sewage Treatment Game Theory Based Optimization of Security Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1