车载浮动交错升压变换器的改进电流控制

Nassira Barhoumi, Hajer Marzougui, F. Bacha
{"title":"车载浮动交错升压变换器的改进电流控制","authors":"Nassira Barhoumi, Hajer Marzougui, F. Bacha","doi":"10.1109/scc53769.2021.9768391","DOIUrl":null,"url":null,"abstract":"This paper investigates the performance of four-phase Floating Interleaved Boost Converter (FIBC) for vehicular applications. For such applications, current control is indispensable in order to ensure the vehicle power (eventually the current) requirement satisfaction. For this reason, two methods are applied in this work to control the current of the source associated to the studied converter which is a fuel cell in our case. This first method is based on using one current control loop which allows to maintain the total current in the output of the source equal to its reference. The second method consists on improving the first one by applying a current control loop for each converter leg (i.e using four control loops). This converter offers improved efficiency and voltage gain, while ensuring lower input current ripple than other DC-DC boost converter topologies.In this paper, the proposed controls are evaluated for the same road conditions by applying the New European driving cycle (NEDC). Simulation results are presented to validate the effectiveness of the two adopted controls and prove the improvements presented by the technology using four control loops.","PeriodicalId":365845,"journal":{"name":"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved current Control of Floating Interleaved Boost Converter Dedicated to Vehicular Applications\",\"authors\":\"Nassira Barhoumi, Hajer Marzougui, F. Bacha\",\"doi\":\"10.1109/scc53769.2021.9768391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the performance of four-phase Floating Interleaved Boost Converter (FIBC) for vehicular applications. For such applications, current control is indispensable in order to ensure the vehicle power (eventually the current) requirement satisfaction. For this reason, two methods are applied in this work to control the current of the source associated to the studied converter which is a fuel cell in our case. This first method is based on using one current control loop which allows to maintain the total current in the output of the source equal to its reference. The second method consists on improving the first one by applying a current control loop for each converter leg (i.e using four control loops). This converter offers improved efficiency and voltage gain, while ensuring lower input current ripple than other DC-DC boost converter topologies.In this paper, the proposed controls are evaluated for the same road conditions by applying the New European driving cycle (NEDC). Simulation results are presented to validate the effectiveness of the two adopted controls and prove the improvements presented by the technology using four control loops.\",\"PeriodicalId\":365845,\"journal\":{\"name\":\"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/scc53769.2021.9768391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scc53769.2021.9768391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了车载四相浮动交错升压变换器(FIBC)的性能。对于此类应用,电流控制是必不可少的,以确保车辆的功率(最终是电流)要求的满足。为此,本文采用了两种方法来控制与所研究的变换器(本例中为燃料电池)相关的源电流。第一种方法是基于使用一个电流控制回路,它允许保持源输出中的总电流等于其参考电流。第二种方法是对第一种方法进行改进,对每个变流器分支应用一个电流控制回路(即使用四个控制回路)。该转换器提供了更高的效率和电压增益,同时确保比其他DC-DC升压转换器拓扑更低的输入电流纹波。本文通过应用新欧洲驾驶循环(NEDC)对相同道路条件下提出的控制方法进行了评估。仿真结果验证了所采用的两种控制方法的有效性,并通过四个控制回路验证了该技术所带来的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved current Control of Floating Interleaved Boost Converter Dedicated to Vehicular Applications
This paper investigates the performance of four-phase Floating Interleaved Boost Converter (FIBC) for vehicular applications. For such applications, current control is indispensable in order to ensure the vehicle power (eventually the current) requirement satisfaction. For this reason, two methods are applied in this work to control the current of the source associated to the studied converter which is a fuel cell in our case. This first method is based on using one current control loop which allows to maintain the total current in the output of the source equal to its reference. The second method consists on improving the first one by applying a current control loop for each converter leg (i.e using four control loops). This converter offers improved efficiency and voltage gain, while ensuring lower input current ripple than other DC-DC boost converter topologies.In this paper, the proposed controls are evaluated for the same road conditions by applying the New European driving cycle (NEDC). Simulation results are presented to validate the effectiveness of the two adopted controls and prove the improvements presented by the technology using four control loops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and Evaluation of the ACE DTLS Framework over Internet of Things Devices Rule-Based power sharing strategy for a fuel cell-supercapacitor vehicle Investigation the Performance Effect of QOS in MPLS-TE Network Advanced nonlinear method of a Photovoltaic system connected to the single-phase network Overview and comparatif of maximum power point tracking methods of PV power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1