{"title":"成本有效的部分扫描硬件仿真","authors":"Tao Li, Qiang Liu","doi":"10.1109/FCCM.2016.39","DOIUrl":null,"url":null,"abstract":"FPGA-based hardware emulation platform runs significantly faster than software simulation for verifying complex circuit designs. However, the controllability and observability of circuit internal signals mapped onto FPGAs are restricted due to the limited chip pins. Scan chain-based technique is effective in providing full-chip controllability and observability, at the cost of large area overhead, especially for FPGAs. Therefore, partial scan has been proposed as an alternative way to improve the controllability and observability while reducing the area cost. However, the optimized partial scan solution with the minimum number of scan flip-flops is not always found. This paper formulates the classical balanced structure partial scan procedure in one step as an integer linear programming problem, leading to the optimized partial scan solution. In addition, partially used logic resources in FPGAs are exploited to implement the extra logic required by the scan chain, to further reduce the area cost. Experimental results show that our partial scan approach can reduce the area overhead by 78.6% and 16.6% compared to the full scan and the existing partial scan approach.","PeriodicalId":113498,"journal":{"name":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"7 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cost Effective Partial Scan for Hardware Emulation\",\"authors\":\"Tao Li, Qiang Liu\",\"doi\":\"10.1109/FCCM.2016.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FPGA-based hardware emulation platform runs significantly faster than software simulation for verifying complex circuit designs. However, the controllability and observability of circuit internal signals mapped onto FPGAs are restricted due to the limited chip pins. Scan chain-based technique is effective in providing full-chip controllability and observability, at the cost of large area overhead, especially for FPGAs. Therefore, partial scan has been proposed as an alternative way to improve the controllability and observability while reducing the area cost. However, the optimized partial scan solution with the minimum number of scan flip-flops is not always found. This paper formulates the classical balanced structure partial scan procedure in one step as an integer linear programming problem, leading to the optimized partial scan solution. In addition, partially used logic resources in FPGAs are exploited to implement the extra logic required by the scan chain, to further reduce the area cost. Experimental results show that our partial scan approach can reduce the area overhead by 78.6% and 16.6% compared to the full scan and the existing partial scan approach.\",\"PeriodicalId\":113498,\"journal\":{\"name\":\"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"7 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2016.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2016.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost Effective Partial Scan for Hardware Emulation
FPGA-based hardware emulation platform runs significantly faster than software simulation for verifying complex circuit designs. However, the controllability and observability of circuit internal signals mapped onto FPGAs are restricted due to the limited chip pins. Scan chain-based technique is effective in providing full-chip controllability and observability, at the cost of large area overhead, especially for FPGAs. Therefore, partial scan has been proposed as an alternative way to improve the controllability and observability while reducing the area cost. However, the optimized partial scan solution with the minimum number of scan flip-flops is not always found. This paper formulates the classical balanced structure partial scan procedure in one step as an integer linear programming problem, leading to the optimized partial scan solution. In addition, partially used logic resources in FPGAs are exploited to implement the extra logic required by the scan chain, to further reduce the area cost. Experimental results show that our partial scan approach can reduce the area overhead by 78.6% and 16.6% compared to the full scan and the existing partial scan approach.