一种基于机器学习的注塑件成本自动估算方法

Florian Klocker, Reinhard Bernsteiner, Christian Ploder, Martin Nocker
{"title":"一种基于机器学习的注塑件成本自动估算方法","authors":"Florian Klocker, Reinhard Bernsteiner, Christian Ploder, Martin Nocker","doi":"10.37256/ccds.4220232277","DOIUrl":null,"url":null,"abstract":"Market competition leads to shorter cycle times for new or updated products. Therefore, flexibility in reacting to market changes, product development, and all related processes must be accelerated. In this regard, accurate cost estimation in the early stages of product development is critical for assessing the economic viability of a product. However, cost estimation requires data and expertise from several departments. Machine learning approaches could improve the accuracy and reduce the time needed for cost estimation. To investigate the eligibility of machine learning based cost estimation, a case study was conducted on an industrial company that produces plastic molding parts as key components of its products. The study involved training various supervised machine learning algorithms on a dataset of plastic injection molding parts using three different cost calculation methods. The three methods differed in the extent to which they considered the different process steps involved in the production of the parts. Different tree-based machine learning regression models and neural network models were trained to identify the most suitable approach for cost estimation in the given context. The results showed that tree-based machine learning algorithms outperformed neural networks and that individually predicting manufacturing parameters for cost calculation of each manufacturing process step leads to the most accurate cost estimation. This paper demonstrates how machine learning can support cost estimation in the early stages of the product lifecycle, reducing development times and improving cost estimation accuracy.","PeriodicalId":158315,"journal":{"name":"Cloud Computing and Data Science","volume":"7 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Approach for Automated Cost Estimation of Plastic Injection Molding Parts\",\"authors\":\"Florian Klocker, Reinhard Bernsteiner, Christian Ploder, Martin Nocker\",\"doi\":\"10.37256/ccds.4220232277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Market competition leads to shorter cycle times for new or updated products. Therefore, flexibility in reacting to market changes, product development, and all related processes must be accelerated. In this regard, accurate cost estimation in the early stages of product development is critical for assessing the economic viability of a product. However, cost estimation requires data and expertise from several departments. Machine learning approaches could improve the accuracy and reduce the time needed for cost estimation. To investigate the eligibility of machine learning based cost estimation, a case study was conducted on an industrial company that produces plastic molding parts as key components of its products. The study involved training various supervised machine learning algorithms on a dataset of plastic injection molding parts using three different cost calculation methods. The three methods differed in the extent to which they considered the different process steps involved in the production of the parts. Different tree-based machine learning regression models and neural network models were trained to identify the most suitable approach for cost estimation in the given context. The results showed that tree-based machine learning algorithms outperformed neural networks and that individually predicting manufacturing parameters for cost calculation of each manufacturing process step leads to the most accurate cost estimation. This paper demonstrates how machine learning can support cost estimation in the early stages of the product lifecycle, reducing development times and improving cost estimation accuracy.\",\"PeriodicalId\":158315,\"journal\":{\"name\":\"Cloud Computing and Data Science\",\"volume\":\"7 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cloud Computing and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/ccds.4220232277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cloud Computing and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/ccds.4220232277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

市场竞争导致新产品或更新产品的周期缩短。因此,必须加快对市场变化、产品开发和所有相关过程作出反应的灵活性。在这方面,在产品开发的早期阶段进行准确的成本估计对于评估产品的经济可行性至关重要。然而,成本估算需要来自多个部门的数据和专业知识。机器学习方法可以提高准确性,减少成本估算所需的时间。为了研究基于机器学习的成本估算的适用性,对一家生产塑料成型零件作为其产品关键部件的工业公司进行了案例研究。该研究涉及使用三种不同的成本计算方法在塑料注射成型零件数据集上训练各种监督机器学习算法。这三种方法的不同之处在于它们考虑了零件生产中涉及的不同工艺步骤。训练不同的基于树的机器学习回归模型和神经网络模型,以确定给定环境中最适合的成本估算方法。结果表明,基于树的机器学习算法优于神经网络,并且在每个制造过程步骤的成本计算中单独预测制造参数可以获得最准确的成本估算。本文演示了机器学习如何在产品生命周期的早期阶段支持成本估算,减少开发时间并提高成本估算的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Approach for Automated Cost Estimation of Plastic Injection Molding Parts
Market competition leads to shorter cycle times for new or updated products. Therefore, flexibility in reacting to market changes, product development, and all related processes must be accelerated. In this regard, accurate cost estimation in the early stages of product development is critical for assessing the economic viability of a product. However, cost estimation requires data and expertise from several departments. Machine learning approaches could improve the accuracy and reduce the time needed for cost estimation. To investigate the eligibility of machine learning based cost estimation, a case study was conducted on an industrial company that produces plastic molding parts as key components of its products. The study involved training various supervised machine learning algorithms on a dataset of plastic injection molding parts using three different cost calculation methods. The three methods differed in the extent to which they considered the different process steps involved in the production of the parts. Different tree-based machine learning regression models and neural network models were trained to identify the most suitable approach for cost estimation in the given context. The results showed that tree-based machine learning algorithms outperformed neural networks and that individually predicting manufacturing parameters for cost calculation of each manufacturing process step leads to the most accurate cost estimation. This paper demonstrates how machine learning can support cost estimation in the early stages of the product lifecycle, reducing development times and improving cost estimation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeepMetaDroid: Real-Time Android Malware Detection Using Deep Learning and Metadata Features Advancing Stock Market Predictions with Time Series Analysis including LSTM and ARIMA Geochemical and Geospatial Distribution of Organic Contaminants in the Flood Plain of Ekpetiama, Niger Delta Region of Nigeria Smart Contracts Security Application and Challenges: A Review A Review on Current Trends and Applications of Social Media Research in Sri Lanka
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1