基于IEC 61850的智能电网时间关键通信网络性能评估

H. Georg, N. Dorsch, M. Putzke, C. Wietfeld
{"title":"基于IEC 61850的智能电网时间关键通信网络性能评估","authors":"H. Georg, N. Dorsch, M. Putzke, C. Wietfeld","doi":"10.1109/INFCOMW.2013.6562906","DOIUrl":null,"url":null,"abstract":"Driven by the increasing application of Smart Grid technologies in today's power systems, communication networks are becoming more and more important for exchanging monitoring, control and protection information on local and wide area level. For communication the IEC 61850 standard is a candidate for the Smart Grid and has been introduced for Substation Automation Systems (SAS) some years ago. IEC 61850 provides interoperability among various manufactures and enables systemwide communication between intelligent components of future power systems. However, as IEC 61850 addresses Ethernet (ISO/IEC 8802-3 family) as network technology, especially high performance aspects of Ethernet have become increasingly important for time-critical communication within substation automation systems. In this paper we introduce the generic architecture of IEC 61850 and present our modelling approach for evaluating high performance and real-time capability of communication technologies for future smart grid application. First, we give a short overview of the IEC 61850 protocol and present communication flows in substation automation systems according to the standard. Here we focus on substation automation at bay level, located inside an exemplary substation node taken from the IEEE 39-bus power system network. Afterwards we demonstrate our modeling approach for communication networks based on IEC 61850. For performance evaluation we developed a simulation model along with an analytical approach on basis of Network Calculus, enabling to identify worst case boundaries for intra-substation communication. Finally results for simulative and analytical modelling are provided and cross validated for two bay level scenarios, showing the applicability of Network Calculus for real-time constrained smart grid communication.","PeriodicalId":206346,"journal":{"name":"2013 Proceedings IEEE INFOCOM","volume":"221 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Performance evaluation of time-critical communication networks for smart grids based on IEC 61850\",\"authors\":\"H. Georg, N. Dorsch, M. Putzke, C. Wietfeld\",\"doi\":\"10.1109/INFCOMW.2013.6562906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven by the increasing application of Smart Grid technologies in today's power systems, communication networks are becoming more and more important for exchanging monitoring, control and protection information on local and wide area level. For communication the IEC 61850 standard is a candidate for the Smart Grid and has been introduced for Substation Automation Systems (SAS) some years ago. IEC 61850 provides interoperability among various manufactures and enables systemwide communication between intelligent components of future power systems. However, as IEC 61850 addresses Ethernet (ISO/IEC 8802-3 family) as network technology, especially high performance aspects of Ethernet have become increasingly important for time-critical communication within substation automation systems. In this paper we introduce the generic architecture of IEC 61850 and present our modelling approach for evaluating high performance and real-time capability of communication technologies for future smart grid application. First, we give a short overview of the IEC 61850 protocol and present communication flows in substation automation systems according to the standard. Here we focus on substation automation at bay level, located inside an exemplary substation node taken from the IEEE 39-bus power system network. Afterwards we demonstrate our modeling approach for communication networks based on IEC 61850. For performance evaluation we developed a simulation model along with an analytical approach on basis of Network Calculus, enabling to identify worst case boundaries for intra-substation communication. Finally results for simulative and analytical modelling are provided and cross validated for two bay level scenarios, showing the applicability of Network Calculus for real-time constrained smart grid communication.\",\"PeriodicalId\":206346,\"journal\":{\"name\":\"2013 Proceedings IEEE INFOCOM\",\"volume\":\"221 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings IEEE INFOCOM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOMW.2013.6562906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings IEEE INFOCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2013.6562906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

随着智能电网技术在当今电力系统中的应用越来越广泛,通信网络对于交换局域和广域的监测、控制和保护信息变得越来越重要。对于通信,IEC 61850标准是智能电网的候选标准,几年前已被引入变电站自动化系统(SAS)。IEC 61850提供了不同制造商之间的互操作性,并实现了未来电力系统智能组件之间的全系统通信。然而,由于IEC 61850将以太网(ISO/IEC 8802-3家族)作为网络技术,特别是以太网的高性能方面对于变电站自动化系统中的时间关键通信变得越来越重要。在本文中,我们介绍了IEC 61850的通用架构,并提出了我们的建模方法,用于评估未来智能电网应用中通信技术的高性能和实时性。首先,我们简要概述了IEC 61850协议,并根据该标准介绍了变电站自动化系统中的通信流程。在这里,我们专注于变电站自动化在海湾级,位于一个示范性变电站节点内,取自IEEE 39总线电力系统网络。随后,我们演示了基于IEC 61850的通信网络建模方法。为了进行性能评估,我们开发了一个仿真模型以及基于网络演算的分析方法,从而能够确定变电站内通信的最坏情况边界。最后给出了仿真和分析建模的结果,并对两个海湾级场景进行了交叉验证,表明了网络演算在实时约束智能电网通信中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance evaluation of time-critical communication networks for smart grids based on IEC 61850
Driven by the increasing application of Smart Grid technologies in today's power systems, communication networks are becoming more and more important for exchanging monitoring, control and protection information on local and wide area level. For communication the IEC 61850 standard is a candidate for the Smart Grid and has been introduced for Substation Automation Systems (SAS) some years ago. IEC 61850 provides interoperability among various manufactures and enables systemwide communication between intelligent components of future power systems. However, as IEC 61850 addresses Ethernet (ISO/IEC 8802-3 family) as network technology, especially high performance aspects of Ethernet have become increasingly important for time-critical communication within substation automation systems. In this paper we introduce the generic architecture of IEC 61850 and present our modelling approach for evaluating high performance and real-time capability of communication technologies for future smart grid application. First, we give a short overview of the IEC 61850 protocol and present communication flows in substation automation systems according to the standard. Here we focus on substation automation at bay level, located inside an exemplary substation node taken from the IEEE 39-bus power system network. Afterwards we demonstrate our modeling approach for communication networks based on IEC 61850. For performance evaluation we developed a simulation model along with an analytical approach on basis of Network Calculus, enabling to identify worst case boundaries for intra-substation communication. Finally results for simulative and analytical modelling are provided and cross validated for two bay level scenarios, showing the applicability of Network Calculus for real-time constrained smart grid communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VoteTrust: Leveraging friend invitation graph to defend against social network Sybils Groupon in the Air: A three-stage auction framework for Spectrum Group-buying Into the Moana1 — Hypergraph-based network layer indirection Prometheus: Privacy-aware data retrieval on hybrid cloud Adaptive device-free passive localization coping with dynamic target speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1