使用SVD特征的手指验证

A. Balti, M. Sayadi, F. Fnaiech
{"title":"使用SVD特征的手指验证","authors":"A. Balti, M. Sayadi, F. Fnaiech","doi":"10.1109/ISIAS.2013.6947728","DOIUrl":null,"url":null,"abstract":"Our objective of this project is to apply the theory of linear algebra called “singular value decomposition (SVD)” to digital image processing, specifically for fingerprint images verification. For optimal recognition, we proceed in two steps. In the first step, we begin by identifying the fingerprint features with SVD approach. In the second step, the classification accuracy of the proposed approach is evaluated with Back Propagation Neural Network (BPNN) classifier. I have implemented many extensive experiments, they prove that the fingerprint classification based on a novel SVD features and the BPNN give better results in fingerprint verification than several other features and methods.","PeriodicalId":370107,"journal":{"name":"2013 9th International Conference on Information Assurance and Security (IAS)","volume":"240 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finger verification Using SVD features\",\"authors\":\"A. Balti, M. Sayadi, F. Fnaiech\",\"doi\":\"10.1109/ISIAS.2013.6947728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our objective of this project is to apply the theory of linear algebra called “singular value decomposition (SVD)” to digital image processing, specifically for fingerprint images verification. For optimal recognition, we proceed in two steps. In the first step, we begin by identifying the fingerprint features with SVD approach. In the second step, the classification accuracy of the proposed approach is evaluated with Back Propagation Neural Network (BPNN) classifier. I have implemented many extensive experiments, they prove that the fingerprint classification based on a novel SVD features and the BPNN give better results in fingerprint verification than several other features and methods.\",\"PeriodicalId\":370107,\"journal\":{\"name\":\"2013 9th International Conference on Information Assurance and Security (IAS)\",\"volume\":\"240 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th International Conference on Information Assurance and Security (IAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIAS.2013.6947728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information Assurance and Security (IAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIAS.2013.6947728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们这个项目的目标是将线性代数的理论称为“奇异值分解(SVD)”应用于数字图像处理,特别是指纹图像验证。为了获得最佳识别,我们分两个步骤进行。在第一步中,我们首先用奇异值分解方法识别指纹特征。第二步,使用反向传播神经网络(BPNN)分类器对所提方法的分类精度进行评估。我已经实施了许多广泛的实验,他们证明了基于新的SVD特征和bp神经网络的指纹分类在指纹验证中比其他几种特征和方法取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finger verification Using SVD features
Our objective of this project is to apply the theory of linear algebra called “singular value decomposition (SVD)” to digital image processing, specifically for fingerprint images verification. For optimal recognition, we proceed in two steps. In the first step, we begin by identifying the fingerprint features with SVD approach. In the second step, the classification accuracy of the proposed approach is evaluated with Back Propagation Neural Network (BPNN) classifier. I have implemented many extensive experiments, they prove that the fingerprint classification based on a novel SVD features and the BPNN give better results in fingerprint verification than several other features and methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative penetration testing with item response theory An intelligent system for video events detection The state of the art of risk assessment and management for information systems A survey on digital tracing traitors schemes Finger verification Using SVD features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1