{"title":"TiO2/壳聚糖生物塑料对金黄色葡萄球菌的抑菌作用及其在食品保鲜中的应用","authors":"I. Kustiningsih","doi":"10.48181/WCEJ.V5I1.12115","DOIUrl":null,"url":null,"abstract":"Nowadays, bioplastic development become hot trends to assess environmental issues. Many materials have been purposed to be the best resources for bioplastic manufacturing. Chitosan is one of the most abundant resources in which could derivates from biomaterial waste called chitin. TiO 2 nanoparticles incorporation within biomaterial presumably not only enhance its mechanical properties but also improve biocompatibility of medical characteristic such as bacterial annihilation. From this study, it was shown that small amount of TiO 2 nanoparticles within chitosan bioplastic prove improvement of both characteristic. Nevertheless, it was also slightly increasing material durability to degrade.","PeriodicalId":313477,"journal":{"name":"World Chemical Engineering Journal","volume":"35 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TiO2/Chitosan bioplastic as Antibacterial of Stephylococcus aureus for Food Preservation\",\"authors\":\"I. Kustiningsih\",\"doi\":\"10.48181/WCEJ.V5I1.12115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, bioplastic development become hot trends to assess environmental issues. Many materials have been purposed to be the best resources for bioplastic manufacturing. Chitosan is one of the most abundant resources in which could derivates from biomaterial waste called chitin. TiO 2 nanoparticles incorporation within biomaterial presumably not only enhance its mechanical properties but also improve biocompatibility of medical characteristic such as bacterial annihilation. From this study, it was shown that small amount of TiO 2 nanoparticles within chitosan bioplastic prove improvement of both characteristic. Nevertheless, it was also slightly increasing material durability to degrade.\",\"PeriodicalId\":313477,\"journal\":{\"name\":\"World Chemical Engineering Journal\",\"volume\":\"35 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Chemical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48181/WCEJ.V5I1.12115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Chemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48181/WCEJ.V5I1.12115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TiO2/Chitosan bioplastic as Antibacterial of Stephylococcus aureus for Food Preservation
Nowadays, bioplastic development become hot trends to assess environmental issues. Many materials have been purposed to be the best resources for bioplastic manufacturing. Chitosan is one of the most abundant resources in which could derivates from biomaterial waste called chitin. TiO 2 nanoparticles incorporation within biomaterial presumably not only enhance its mechanical properties but also improve biocompatibility of medical characteristic such as bacterial annihilation. From this study, it was shown that small amount of TiO 2 nanoparticles within chitosan bioplastic prove improvement of both characteristic. Nevertheless, it was also slightly increasing material durability to degrade.