没有仇恨言论的地方@ HaSpeeDe 2:集体识别意大利语中的仇恨言论(短文)

Adriano dos S. R. da Silva, N. T. Roman
{"title":"没有仇恨言论的地方@ HaSpeeDe 2:集体识别意大利语中的仇恨言论(短文)","authors":"Adriano dos S. R. da Silva, N. T. Roman","doi":"10.4000/BOOKS.AACCADEMIA.7027","DOIUrl":null,"url":null,"abstract":"English. In this article, we present the results of applying a Stacking Ensemble method to the problem of hate speech classification proposed in the main task of HaSpeeDe 2 at EVALITA 2020. The model was then compared to a Logistic Regression classifier, along with two other benchmarks defined by the competition’s organising committee (an SVM with a linear kernel and a majority class classifier). Results showed our Ensemble to outperform the benchmarks to various degrees, both when testing in the same domain as training and in a different domain. Italiano. In questo articolo, ci presentiamo i risultati dell’applicazione di un modello di Stacking Ensemble al problema della classificazione dei discorsi di incitamento all’odio nel compito A di EVALITA (HaSpeeDe 2). Il modello è stato quindi confrontato con un modello di regressione logistica, insieme ad altri due benchmark definiti dal comitato organizzatore della competizione (un SVM con un kernel lineare e un classificatore di classe maggioritaria). I risultati hanno mostrato che il nostro Ensemble supera i benchmark a vari livelli, sia durante i test nello stesso dominio di sviluppo che in un dominio di-","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"316 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"No Place For Hate Speech @ HaSpeeDe 2: Ensemble to Identify Hate Speech in Italian (short paper)\",\"authors\":\"Adriano dos S. R. da Silva, N. T. Roman\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.7027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"English. In this article, we present the results of applying a Stacking Ensemble method to the problem of hate speech classification proposed in the main task of HaSpeeDe 2 at EVALITA 2020. The model was then compared to a Logistic Regression classifier, along with two other benchmarks defined by the competition’s organising committee (an SVM with a linear kernel and a majority class classifier). Results showed our Ensemble to outperform the benchmarks to various degrees, both when testing in the same domain as training and in a different domain. Italiano. In questo articolo, ci presentiamo i risultati dell’applicazione di un modello di Stacking Ensemble al problema della classificazione dei discorsi di incitamento all’odio nel compito A di EVALITA (HaSpeeDe 2). Il modello è stato quindi confrontato con un modello di regressione logistica, insieme ad altri due benchmark definiti dal comitato organizzatore della competizione (un SVM con un kernel lineare e un classificatore di classe maggioritaria). I risultati hanno mostrato che il nostro Ensemble supera i benchmark a vari livelli, sia durante i test nello stesso dominio di sviluppo che in un dominio di-\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"316 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.7027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

English。在这篇文章中,我们展示了在2020年HaSpeeDe 2的主要任务中提出的对仇恨言论分类问题的组合方法的结果。然后将该模型与竞争组织委员会定义的另外两个基准进行比较。结果展示了我们的合奏,打破了对不同学位的基准,同时在同一个领域进行训练和不同领域的测试。意大利。在这篇文章中,我们执行的结果那乐团模式分类问题的任务的仇恨言论EVALITA (HaSpeeDe 2)。因此,该模型是与一个logistic回归分析的模式,再加上另外两个竞争的组委会确定的基准(与一个内核和线性分类器,多数类)。结果显示,在同一开发领域和同一开发领域的测试中,我们的合奏在不同层次上都超过了基准
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
No Place For Hate Speech @ HaSpeeDe 2: Ensemble to Identify Hate Speech in Italian (short paper)
English. In this article, we present the results of applying a Stacking Ensemble method to the problem of hate speech classification proposed in the main task of HaSpeeDe 2 at EVALITA 2020. The model was then compared to a Logistic Regression classifier, along with two other benchmarks defined by the competition’s organising committee (an SVM with a linear kernel and a majority class classifier). Results showed our Ensemble to outperform the benchmarks to various degrees, both when testing in the same domain as training and in a different domain. Italiano. In questo articolo, ci presentiamo i risultati dell’applicazione di un modello di Stacking Ensemble al problema della classificazione dei discorsi di incitamento all’odio nel compito A di EVALITA (HaSpeeDe 2). Il modello è stato quindi confrontato con un modello di regressione logistica, insieme ad altri due benchmark definiti dal comitato organizzatore della competizione (un SVM con un kernel lineare e un classificatore di classe maggioritaria). I risultati hanno mostrato che il nostro Ensemble supera i benchmark a vari livelli, sia durante i test nello stesso dominio di sviluppo che in un dominio di-
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1