推荐使用代码的结构和语义表示的Move方法重构机会

Di Cui, Siqi Wang, Yong Luo, Xingyu Li, Jie Dai, Lu Wang, Qingshan Li
{"title":"推荐使用代码的结构和语义表示的Move方法重构机会","authors":"Di Cui, Siqi Wang, Yong Luo, Xingyu Li, Jie Dai, Lu Wang, Qingshan Li","doi":"10.1109/ICSME55016.2022.00033","DOIUrl":null,"url":null,"abstract":"Incorrect placement of methods within classes is a typical code smell called Feature Envy, which causes additional maintenance and cost during evolution. To remove this design flaw, several Move Method refactoring tools have been proposed. To the best of our knowledge, state-of-the-art related techniques can be broadly divided into two categories: the first line is non-machine-learning-based approaches built on software measurement, while the selection and thresholds of software metrics heavily rely on expert knowledge. The second line is machine learning-based approaches, which suggest Move Method refactoring by learning to extract features from code information. However, most approaches in this line treat different forms of code information identically, disregarding their significant variation on data analysis. In this paper, we propose an approach to recommend Move Method refactoring named RMove by automatically learning structural and semantic representation from code fragment respectively. We concatenate these representations together and further train the machine learning classifiers to guide the movement of method to suitable classes. We evaluate our approach on two publicly available datasets. The results show that our approach outperforms three state-of-the-art refactoring tools including PathMove, JDeodorant, and JMove in effectiveness and usefulness. The results also unveil useful findings and provide new insights that benefit other types of feature envy refactoring techniques.","PeriodicalId":300084,"journal":{"name":"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"132 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RMove: Recommending Move Method Refactoring Opportunities using Structural and Semantic Representations of Code\",\"authors\":\"Di Cui, Siqi Wang, Yong Luo, Xingyu Li, Jie Dai, Lu Wang, Qingshan Li\",\"doi\":\"10.1109/ICSME55016.2022.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incorrect placement of methods within classes is a typical code smell called Feature Envy, which causes additional maintenance and cost during evolution. To remove this design flaw, several Move Method refactoring tools have been proposed. To the best of our knowledge, state-of-the-art related techniques can be broadly divided into two categories: the first line is non-machine-learning-based approaches built on software measurement, while the selection and thresholds of software metrics heavily rely on expert knowledge. The second line is machine learning-based approaches, which suggest Move Method refactoring by learning to extract features from code information. However, most approaches in this line treat different forms of code information identically, disregarding their significant variation on data analysis. In this paper, we propose an approach to recommend Move Method refactoring named RMove by automatically learning structural and semantic representation from code fragment respectively. We concatenate these representations together and further train the machine learning classifiers to guide the movement of method to suitable classes. We evaluate our approach on two publicly available datasets. The results show that our approach outperforms three state-of-the-art refactoring tools including PathMove, JDeodorant, and JMove in effectiveness and usefulness. The results also unveil useful findings and provide new insights that benefit other types of feature envy refactoring techniques.\",\"PeriodicalId\":300084,\"journal\":{\"name\":\"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"volume\":\"132 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSME55016.2022.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSME55016.2022.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在类中不正确地放置方法是一种典型的代码气味,称为Feature Envy,它会在进化过程中导致额外的维护和成本。为了消除这个设计缺陷,提出了几个Move Method重构工具。据我们所知,最先进的相关技术可以大致分为两类:第一类是基于软件度量的非机器学习方法,而软件度量的选择和阈值严重依赖于专家知识。第二行是基于机器学习的方法,它建议通过学习从代码信息中提取特征来进行Move Method重构。然而,这一行中的大多数方法都以相同的方式对待不同形式的代码信息,而忽略了它们在数据分析上的显著差异。在本文中,我们提出了一种推荐移动方法重构的方法,即RMove,它分别从代码片段中自动学习结构表示和语义表示。我们将这些表示连接在一起,并进一步训练机器学习分类器,以指导方法移动到合适的类。我们在两个公开可用的数据集上评估我们的方法。结果表明,我们的方法在有效性和有用性方面优于三种最先进的重构工具,包括PathMove、JDeodorant和JMove。研究结果还揭示了一些有用的发现,并提供了有利于其他类型的特性重构技术的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RMove: Recommending Move Method Refactoring Opportunities using Structural and Semantic Representations of Code
Incorrect placement of methods within classes is a typical code smell called Feature Envy, which causes additional maintenance and cost during evolution. To remove this design flaw, several Move Method refactoring tools have been proposed. To the best of our knowledge, state-of-the-art related techniques can be broadly divided into two categories: the first line is non-machine-learning-based approaches built on software measurement, while the selection and thresholds of software metrics heavily rely on expert knowledge. The second line is machine learning-based approaches, which suggest Move Method refactoring by learning to extract features from code information. However, most approaches in this line treat different forms of code information identically, disregarding their significant variation on data analysis. In this paper, we propose an approach to recommend Move Method refactoring named RMove by automatically learning structural and semantic representation from code fragment respectively. We concatenate these representations together and further train the machine learning classifiers to guide the movement of method to suitable classes. We evaluate our approach on two publicly available datasets. The results show that our approach outperforms three state-of-the-art refactoring tools including PathMove, JDeodorant, and JMove in effectiveness and usefulness. The results also unveil useful findings and provide new insights that benefit other types of feature envy refactoring techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RestTestGen: An Extensible Framework for Automated Black-box Testing of RESTful APIs COBREX: A Tool for Extracting Business Rules from COBOL On the Security of Python Virtual Machines: An Empirical Study The Phantom Menace: Unmasking Security Issues in Evolving Software Impact of Defect Instances for Successful Deep Learning-based Automatic Program Repair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1