基于递归神经网络的边缘挑战交通控制

Alessandro Gaballo, Matteo Flocco, Flavio Esposito, G. Marchetto
{"title":"基于递归神经网络的边缘挑战交通控制","authors":"Alessandro Gaballo, Matteo Flocco, Flavio Esposito, G. Marchetto","doi":"10.23919/CNSM46954.2019.9012661","DOIUrl":null,"url":null,"abstract":"With edge computing, it is possible to offload computationally intensive tasks to closer and more powerful servers, passing through an edge network. This practice aims to reduce both response time and energy consumption of data-intensive applications, crucial constraints in mobile and IoT devices. In challenged networked scenarios, such as those deployed by first responders after a natural or human-made disaster, it is particularly challenging to achieve high levels of throughput due to scarce network conditions.In this paper, we present an algorithm for traffic management that takes advantage of a deep learning model to implement the forwarding mechanism during task offloading in these challenging scenarios. In particular, our work explores if and when it is worth using deep learning on a switch to route traffic generated by microservices and offloading requests. Our approach differs from classical ones in the design: we do not train centralized routing decisions. Instead, we let each router learn how to adapt to a lossy path without coordination, by merely using signals from standard performance-unaware protocols such as OSPF. Our results, obtained with a prototype and with simulations are encouraging, and uncover a few surprising results.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"124 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steering Traffic via Recurrent Neural Networks in Challenged Edge Scenarios\",\"authors\":\"Alessandro Gaballo, Matteo Flocco, Flavio Esposito, G. Marchetto\",\"doi\":\"10.23919/CNSM46954.2019.9012661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With edge computing, it is possible to offload computationally intensive tasks to closer and more powerful servers, passing through an edge network. This practice aims to reduce both response time and energy consumption of data-intensive applications, crucial constraints in mobile and IoT devices. In challenged networked scenarios, such as those deployed by first responders after a natural or human-made disaster, it is particularly challenging to achieve high levels of throughput due to scarce network conditions.In this paper, we present an algorithm for traffic management that takes advantage of a deep learning model to implement the forwarding mechanism during task offloading in these challenging scenarios. In particular, our work explores if and when it is worth using deep learning on a switch to route traffic generated by microservices and offloading requests. Our approach differs from classical ones in the design: we do not train centralized routing decisions. Instead, we let each router learn how to adapt to a lossy path without coordination, by merely using signals from standard performance-unaware protocols such as OSPF. Our results, obtained with a prototype and with simulations are encouraging, and uncover a few surprising results.\",\"PeriodicalId\":273818,\"journal\":{\"name\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"volume\":\"124 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM46954.2019.9012661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过边缘计算,可以通过边缘网络将计算密集型任务卸载到更近、更强大的服务器上。这种做法旨在减少数据密集型应用程序的响应时间和能耗,这是移动和物联网设备的关键限制。在具有挑战性的网络场景中,例如在自然或人为灾难后由第一响应者部署的场景,由于网络条件稀缺,实现高水平的吞吐量尤其具有挑战性。在本文中,我们提出了一种流量管理算法,该算法利用深度学习模型在这些具有挑战性的场景中实现任务卸载期间的转发机制。特别是,我们的工作探讨了是否以及何时值得在交换机上使用深度学习来路由由微服务和卸载请求生成的流量。我们的方法在设计上与经典方法不同:我们不训练集中的路由决策。相反,我们让每个路由器学习如何在没有协调的情况下适应有损路径,只使用来自标准性能无关协议(如OSPF)的信号。我们通过原型和模拟得到的结果令人鼓舞,并揭示了一些令人惊讶的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Steering Traffic via Recurrent Neural Networks in Challenged Edge Scenarios
With edge computing, it is possible to offload computationally intensive tasks to closer and more powerful servers, passing through an edge network. This practice aims to reduce both response time and energy consumption of data-intensive applications, crucial constraints in mobile and IoT devices. In challenged networked scenarios, such as those deployed by first responders after a natural or human-made disaster, it is particularly challenging to achieve high levels of throughput due to scarce network conditions.In this paper, we present an algorithm for traffic management that takes advantage of a deep learning model to implement the forwarding mechanism during task offloading in these challenging scenarios. In particular, our work explores if and when it is worth using deep learning on a switch to route traffic generated by microservices and offloading requests. Our approach differs from classical ones in the design: we do not train centralized routing decisions. Instead, we let each router learn how to adapt to a lossy path without coordination, by merely using signals from standard performance-unaware protocols such as OSPF. Our results, obtained with a prototype and with simulations are encouraging, and uncover a few surprising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flow-based Throughput Prediction using Deep Learning and Real-World Network Traffic Learning From Evolving Network Data for Dependable Botnet Detection Exploring NAT Detection and Host Identification Using Machine Learning Lumped Markovian Estimation for Wi-Fi Channel Utilization Prediction An Access Control Implementation Targeting Resource-constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1