利用判别粗糙零空间方法诱导紧致nntree

Kyohei Watarai, Qiangfu Zhao, H. Hayashi
{"title":"利用判别粗糙零空间方法诱导紧致nntree","authors":"Kyohei Watarai, Qiangfu Zhao, H. Hayashi","doi":"10.1109/ICAWST.2011.6163107","DOIUrl":null,"url":null,"abstract":"A Neural Network Tree (NNTree) is a hybrid learning model. NNTrees are more suitable for structural learning and can make decisions faster than normal neural networks. The goal of this research is to embed the NNTrees into different portable devices. To reach this goal, it is necessary to induce compact NNTrees that can be implemented easily on a chip. So far, we have tried several dimensionality reduction approaches, including principle component analysis (PCA), linear discriminant analysis (LDA), direct centroid (DC) approach, and discriminative multiple centroid (DMC) approach. In this paper, we investigate the discriminant rough null space (DRNS) approach.","PeriodicalId":126169,"journal":{"name":"2011 3rd International Conference on Awareness Science and Technology (iCAST)","volume":"38 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inducing compact NNTrees using discriminant rough null space method\",\"authors\":\"Kyohei Watarai, Qiangfu Zhao, H. Hayashi\",\"doi\":\"10.1109/ICAWST.2011.6163107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Neural Network Tree (NNTree) is a hybrid learning model. NNTrees are more suitable for structural learning and can make decisions faster than normal neural networks. The goal of this research is to embed the NNTrees into different portable devices. To reach this goal, it is necessary to induce compact NNTrees that can be implemented easily on a chip. So far, we have tried several dimensionality reduction approaches, including principle component analysis (PCA), linear discriminant analysis (LDA), direct centroid (DC) approach, and discriminative multiple centroid (DMC) approach. In this paper, we investigate the discriminant rough null space (DRNS) approach.\",\"PeriodicalId\":126169,\"journal\":{\"name\":\"2011 3rd International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"38 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2011.6163107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2011.6163107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

神经网络树(NNTree)是一种混合学习模型。NNTrees更适合于结构学习,并且可以比普通神经网络更快地做出决策。这项研究的目标是将NNTrees嵌入到不同的便携式设备中。为了达到这一目标,有必要诱导可以在芯片上轻松实现的紧凑nntree。到目前为止,我们已经尝试了几种降维方法,包括主成分分析(PCA)、线性判别分析(LDA)、直接质心(DC)方法和判别多质心(DMC)方法。本文研究了判别粗糙零空间(DRNS)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inducing compact NNTrees using discriminant rough null space method
A Neural Network Tree (NNTree) is a hybrid learning model. NNTrees are more suitable for structural learning and can make decisions faster than normal neural networks. The goal of this research is to embed the NNTrees into different portable devices. To reach this goal, it is necessary to induce compact NNTrees that can be implemented easily on a chip. So far, we have tried several dimensionality reduction approaches, including principle component analysis (PCA), linear discriminant analysis (LDA), direct centroid (DC) approach, and discriminative multiple centroid (DMC) approach. In this paper, we investigate the discriminant rough null space (DRNS) approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification Network of tourism information A smart phone-based system for supporting “Petit Trips” Semi-automated paper-registration system for institutional repository Visualization of tourism information using WordNet Dynamic noise reduction algorithm based on time-variety filter Design of a 3D localization method for searching survivors after an earthquake based on WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1